Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura I. Furlong is active.

Publication


Featured researches published by Laura I. Furlong.


Database | 2015

DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes

Janet Piñero; Núria Queralt-Rosinach; Àlex Bravo; Jordi Deu-Pons; Anna Bauer-Mehren; Martin Baron; Ferran Sanz; Laura I. Furlong

DisGeNET is a comprehensive discovery platform designed to address a variety of questions concerning the genetic underpinning of human diseases. DisGeNET contains over 380 000 associations between >16 000 genes and 13 000 diseases, which makes it one of the largest repositories currently available of its kind. DisGeNET integrates expert-curated databases with text-mined data, covers information on Mendelian and complex diseases, and includes data from animal disease models. It features a score based on the supporting evidence to prioritize gene-disease associations. It is an open access resource available through a web interface, a Cytoscape plugin and as a Semantic Web resource. The web interface supports user-friendly data exploration and navigation. DisGeNET data can also be analysed via the DisGeNET Cytoscape plugin, and enriched with the annotations of other plugins of this popular network analysis software suite. Finally, the information contained in DisGeNET can be expanded and complemented using Semantic Web technologies and linked to a variety of resources already present in the Linked Data cloud. Hence, DisGeNET offers one of the most comprehensive collections of human gene-disease associations and a valuable set of tools for investigating the molecular mechanisms underlying diseases of genetic origin, designed to fulfill the needs of different user profiles, including bioinformaticians, biologists and health-care practitioners. Database URL: http://www.disgenet.org/


Molecular Systems Biology | 2009

Pathway databases and tools for their exploitation: benefits, current limitations and challenges

Anna Bauer-Mehren; Laura I. Furlong; Ferran Sanz

In past years, comprehensive representations of cell signalling pathways have been developed by manual curation from literature, which requires huge effort and would benefit from information stored in databases and from automatic retrieval and integration methods. Once a reconstruction of the network of interactions is achieved, analysis of its structural features and its dynamic behaviour can take place. Mathematical modelling techniques are used to simulate the complex behaviour of cell signalling networks, which ultimately sheds light on the mechanisms leading to complex diseases or helps in the identification of drug targets. A variety of databases containing information on cell signalling pathways have been developed in conjunction with methodologies to access and analyse the data. In principle, the scenario is prepared to make the most of this information for the analysis of the dynamics of signalling pathways. However, are the knowledge repositories of signalling pathways ready to realize the systems biology promise? In this article we aim to initiate this discussion and to provide some insights on this issue.


Nucleic Acids Research | 2017

DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants

Janet Piñero; Àlex Bravo; Núria Queralt-Rosinach; Alba Gutiérrez-Sacristán; Jordi Deu-Pons; Emilio Centeno; Javier Garcia-Garcia; Ferran Sanz; Laura I. Furlong

The information about the genetic basis of human diseases lies at the heart of precision medicine and drug discovery. However, to realize its full potential to support these goals, several problems, such as fragmentation, heterogeneity, availability and different conceptualization of the data must be overcome. To provide the community with a resource free of these hurdles, we have developed DisGeNET (http://www.disgenet.org), one of the largest available collections of genes and variants involved in human diseases. DisGeNET integrates data from expert curated repositories, GWAS catalogues, animal models and the scientific literature. DisGeNET data are homogeneously annotated with controlled vocabularies and community-driven ontologies. Additionally, several original metrics are provided to assist the prioritization of genotype–phenotype relationships. The information is accessible through a web interface, a Cytoscape App, an RDF SPARQL endpoint, scripts in several programming languages and an R package. DisGeNET is a versatile platform that can be used for different research purposes including the investigation of the molecular underpinnings of specific human diseases and their comorbidities, the analysis of the properties of disease genes, the generation of hypothesis on drug therapeutic action and drug adverse effects, the validation of computationally predicted disease genes and the evaluation of text-mining methods performance.


PLOS ONE | 2011

Gene-Disease Network Analysis Reveals Functional Modules in Mendelian, Complex and Environmental Diseases

Anna Bauer-Mehren; Markus Bundschus; Michael Rautschka; Miguel Angel Mayer; Ferran Sanz; Laura I. Furlong

Background Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. Principal Findings We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. Conclusions For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. Availability The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download.


Bioinformatics | 2010

DisGeNET: a Cytoscape plugin to visualize, integrate, search and analyze gene-disease networks

Anna Bauer-Mehren; Michael Rautschka; Ferran Sanz; Laura I. Furlong

UNLABELLED DisGeNET is a plugin for Cytoscape to query and analyze human gene-disease networks. DisGeNET allows user-friendly access to a new gene-disease database that we have developed by integrating data from several public sources. DisGeNET permits queries restricted to (i) the original data source, (ii) the association type, (iii) the disease class or (iv) specific gene(s)/disease(s). It represents gene-disease associations in terms of bipartite graphs and provides gene centric and disease centric views of the data. It assists the user in the interpretation and exploration of the genetic basis of human diseases by a variety of built-in functions. Moreover, DisGeNET permits multicolouring of nodes (genes/diseases) according to standard disease classification for expedient visualization. AVAILABILITY DisGeNET is compatible with Cytoscape 2.6.3 and 2.7.0, please visit http://ibi.imim.es/DisGeNET/DisGeNETweb.html for installation guide, user tutorial and download.


Trends in Genetics | 2013

Human diseases through the lens of network biology

Laura I. Furlong

One of the challenges raised by next generation sequencing (NGS) is the identification of clinically relevant mutations among all the genetic variation found in an individual. Network biology has emerged as an integrative and systems-level approach for the interpretation of genome data in the context of health and disease. Network biology can provide insightful models for genetic phenomena such as penetrance, epistasis, and modes of inheritance, all of which are integral aspects of Mendelian and complex diseases. Moreover, it can shed light on disease mechanisms via the identification of modules perturbed in those diseases. Current challenges include understanding disease as a result of the interplay between environmental and genetic perturbations and assessing the impact of personal sequence variations in the context of networks. Full realization of the potential of personal genomics will benefit from network biology approaches that aim to uncover the mechanisms underlying disease pathogenesis, identify new biomarkers, and guide personalized therapeutic interventions.


Journal of Biomedical Semantics | 2014

The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery

Michel Dumontier; Christopher J. O. Baker; Joachim Baran; Alison Callahan; Leonid L. Chepelev; José Cruz-Toledo; Nicholas Del Rio; Geraint Duck; Laura I. Furlong; Nichealla Keath; Dana Klassen; James P. McCusker; Núria Queralt-Rosinach; Matthias Samwald; Natalia Villanueva-Rosales; Mark D. Wilkinson; Robert Hoehndorf

The Semanticscience Integrated Ontology (SIO) is an ontology to facilitate biomedical knowledge discovery. SIO features a simple upper level comprised of essential types and relations for the rich description of arbitrary (real, hypothesized, virtual, fictional) objects, processes and their attributes. SIO specifies simple design patterns to describe and associate qualities, capabilities, functions, quantities, and informational entities including textual, geometrical, and mathematical entities, and provides specific extensions in the domains of chemistry, biology, biochemistry, and bioinformatics. SIO provides an ontological foundation for the Bio2RDF linked data for the life sciences project and is used for semantic integration and discovery for SADI-based semantic web services. SIO is freely available to all users under a creative commons by attribution license. See website for further information: http://sio.semanticscience.org.


Journal of Biomedical Semantics | 2011

Assessment of NER solutions against the first and second CALBC Silver Standard Corpus

Dietrich Rebholz-Schuhmann; Antonio Jimeno Yepes; Chen Li; Senay Kafkas; Ian Lewin; Ning Kang; Peter Corbett; David Milward; Ekaterina Buyko; Elena Beisswanger; Kerstin Hornbostel; Alexandre Kouznetsov; René Witte; Jonas B. Laurila; Christopher J. O. Baker; Cheng-Ju Kuo; Simone Clematide; Fabio Rinaldi; Richárd Farkas; György Móra; Kazuo Hara; Laura I. Furlong; Michael Rautschka; Mariana Neves; Alberto Pascual-Montano; Qi Wei; Nigel Collier; Faisal Mahbub Chowdhury; Alberto Lavelli; Rafael Berlanga

BackgroundCompetitions in text mining have been used to measure the performance of automatic text processing solutions against a manually annotated gold standard corpus (GSC). The preparation of the GSC is time-consuming and costly and the final corpus consists at the most of a few thousand documents annotated with a limited set of semantic groups. To overcome these shortcomings, the CALBC project partners (PPs) have produced a large-scale annotated biomedical corpus with four different semantic groups through the harmonisation of annotations from automatic text mining solutions, the first version of the Silver Standard Corpus (SSC-I). The four semantic groups are chemical entities and drugs (CHED), genes and proteins (PRGE), diseases and disorders (DISO) and species (SPE). This corpus has been used for the First CALBC Challenge asking the participants to annotate the corpus with their text processing solutions.ResultsAll four PPs from the CALBC project and in addition, 12 challenge participants (CPs) contributed annotated data sets for an evaluation against the SSC-I. CPs could ignore the training data and deliver the annotations from their genuine annotation system, or could train a machine-learning approach on the provided pre-annotated data. In general, the performances of the annotation solutions were lower for entities from the categories CHED and PRGE in comparison to the identification of entities categorized as DISO and SPE. The best performance over all semantic groups were achieved from two annotation solutions that have been trained on the SSC-I.The data sets from participants were used to generate the harmonised Silver Standard Corpus II (SSC-II), if the participant did not make use of the annotated data set from the SSC-I for training purposes. The performances of the participants’ solutions were again measured against the SSC-II. The performances of the annotation solutions showed again better results for DISO and SPE in comparison to CHED and PRGE.ConclusionsThe SSC-I delivers a large set of annotations (1,121,705) for a large number of documents (100,000 Medline abstracts). The annotations cover four different semantic groups and are sufficiently homogeneous to be reproduced with a trained classifier leading to an average F-measure of 85%. Benchmarking the annotation solutions against the SSC-II leads to better performance for the CPs’ annotation solutions in comparison to the SSC-I.


Journal of Biomedical Informatics | 2012

The EU-ADR corpus

Erik M. van Mulligen; Annie Fourrier-Réglat; David Gurwitz; Mariam Molokhia; Ainhoa Nieto; Gianluca Trifirò; Jan A. Kors; Laura I. Furlong

Corpora with specific entities and relationships annotated are essential to train and evaluate text-mining systems that are developed to extract specific structured information from a large corpus. In this paper we describe an approach where a named-entity recognition system produces a first annotation and annotators revise this annotation using a web-based interface. The agreement figures achieved show that the inter-annotator agreement is much better than the agreement with the system provided annotations. The corpus has been annotated for drugs, disorders, genes and their inter-relationships. For each of the drug-disorder, drug-target, and target-disorder relations three experts have annotated a set of 100 abstracts. These annotated relationships will be used to train and evaluate text-mining software to capture these relationships in texts.


BMC Bioinformatics | 2015

Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research

Àlex Bravo; Janet Piñero; Núria Queralt-Rosinach; Michael Rautschka; Laura I. Furlong

BackgroundCurrent biomedical research needs to leverage and exploit the large amount of information reported in scientific publications. Automated text mining approaches, in particular those aimed at finding relationships between entities, are key for identification of actionable knowledge from free text repositories. We present the BeFree system aimed at identifying relationships between biomedical entities with a special focus on genes and their associated diseases.ResultsBy exploiting morpho-syntactic information of the text, BeFree is able to identify gene-disease, drug-disease and drug-target associations with state-of-the-art performance. The application of BeFree to real-case scenarios shows its effectiveness in extracting information relevant for translational research. We show the value of the gene-disease associations extracted by BeFree through a number of analyses and integration with other data sources. BeFree succeeds in identifying genes associated to a major cause of morbidity worldwide, depression, which are not present in other public resources. Moreover, large-scale extraction and analysis of gene-disease associations, and integration with current biomedical knowledge, provided interesting insights on the kind of information that can be found in the literature, and raised challenges regarding data prioritization and curation. We found that only a small proportion of the gene-disease associations discovered by using BeFree is collected in expert-curated databases. Thus, there is a pressing need to find alternative strategies to manual curation, in order to review, prioritize and curate text-mining data and incorporate it into domain-specific databases. We present our strategy for data prioritization and discuss its implications for supporting biomedical research and applications.ConclusionsBeFree is a novel text mining system that performs competitively for the identification of gene-disease, drug-disease and drug-target associations. Our analyses show that mining only a small fraction of MEDLINE results in a large dataset of gene-disease associations, and only a small proportion of this dataset is actually recorded in curated resources (2%), raising several issues on data prioritization and curation. We propose that joint analysis of text mined data with data curated by experts appears as a suitable approach to both assess data quality and highlight novel and interesting information.

Collaboration


Dive into the Laura I. Furlong's collaboration.

Top Co-Authors

Avatar

Ferran Sanz

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Àlex Bravo

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvar Agusti

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Baldo Oliva

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge