Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janet Piñero is active.

Publication


Featured researches published by Janet Piñero.


Database | 2015

DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes

Janet Piñero; Núria Queralt-Rosinach; Àlex Bravo; Jordi Deu-Pons; Anna Bauer-Mehren; Martin Baron; Ferran Sanz; Laura I. Furlong

DisGeNET is a comprehensive discovery platform designed to address a variety of questions concerning the genetic underpinning of human diseases. DisGeNET contains over 380 000 associations between >16 000 genes and 13 000 diseases, which makes it one of the largest repositories currently available of its kind. DisGeNET integrates expert-curated databases with text-mined data, covers information on Mendelian and complex diseases, and includes data from animal disease models. It features a score based on the supporting evidence to prioritize gene-disease associations. It is an open access resource available through a web interface, a Cytoscape plugin and as a Semantic Web resource. The web interface supports user-friendly data exploration and navigation. DisGeNET data can also be analysed via the DisGeNET Cytoscape plugin, and enriched with the annotations of other plugins of this popular network analysis software suite. Finally, the information contained in DisGeNET can be expanded and complemented using Semantic Web technologies and linked to a variety of resources already present in the Linked Data cloud. Hence, DisGeNET offers one of the most comprehensive collections of human gene-disease associations and a valuable set of tools for investigating the molecular mechanisms underlying diseases of genetic origin, designed to fulfill the needs of different user profiles, including bioinformaticians, biologists and health-care practitioners. Database URL: http://www.disgenet.org/


Nucleic Acids Research | 2017

DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants

Janet Piñero; Àlex Bravo; Núria Queralt-Rosinach; Alba Gutiérrez-Sacristán; Jordi Deu-Pons; Emilio Centeno; Javier Garcia-Garcia; Ferran Sanz; Laura I. Furlong

The information about the genetic basis of human diseases lies at the heart of precision medicine and drug discovery. However, to realize its full potential to support these goals, several problems, such as fragmentation, heterogeneity, availability and different conceptualization of the data must be overcome. To provide the community with a resource free of these hurdles, we have developed DisGeNET (http://www.disgenet.org), one of the largest available collections of genes and variants involved in human diseases. DisGeNET integrates data from expert curated repositories, GWAS catalogues, animal models and the scientific literature. DisGeNET data are homogeneously annotated with controlled vocabularies and community-driven ontologies. Additionally, several original metrics are provided to assist the prioritization of genotype–phenotype relationships. The information is accessible through a web interface, a Cytoscape App, an RDF SPARQL endpoint, scripts in several programming languages and an R package. DisGeNET is a versatile platform that can be used for different research purposes including the investigation of the molecular underpinnings of specific human diseases and their comorbidities, the analysis of the properties of disease genes, the generation of hypothesis on drug therapeutic action and drug adverse effects, the validation of computationally predicted disease genes and the evaluation of text-mining methods performance.


BMC Bioinformatics | 2015

Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research

Àlex Bravo; Janet Piñero; Núria Queralt-Rosinach; Michael Rautschka; Laura I. Furlong

BackgroundCurrent biomedical research needs to leverage and exploit the large amount of information reported in scientific publications. Automated text mining approaches, in particular those aimed at finding relationships between entities, are key for identification of actionable knowledge from free text repositories. We present the BeFree system aimed at identifying relationships between biomedical entities with a special focus on genes and their associated diseases.ResultsBy exploiting morpho-syntactic information of the text, BeFree is able to identify gene-disease, drug-disease and drug-target associations with state-of-the-art performance. The application of BeFree to real-case scenarios shows its effectiveness in extracting information relevant for translational research. We show the value of the gene-disease associations extracted by BeFree through a number of analyses and integration with other data sources. BeFree succeeds in identifying genes associated to a major cause of morbidity worldwide, depression, which are not present in other public resources. Moreover, large-scale extraction and analysis of gene-disease associations, and integration with current biomedical knowledge, provided interesting insights on the kind of information that can be found in the literature, and raised challenges regarding data prioritization and curation. We found that only a small proportion of the gene-disease associations discovered by using BeFree is collected in expert-curated databases. Thus, there is a pressing need to find alternative strategies to manual curation, in order to review, prioritize and curate text-mining data and incorporate it into domain-specific databases. We present our strategy for data prioritization and discuss its implications for supporting biomedical research and applications.ConclusionsBeFree is a novel text mining system that performs competitively for the identification of gene-disease, drug-disease and drug-target associations. Our analyses show that mining only a small fraction of MEDLINE results in a large dataset of gene-disease associations, and only a small proportion of this dataset is actually recorded in curated resources (2%), raising several issues on data prioritization and curation. We propose that joint analysis of text mined data with data curated by experts appears as a suitable approach to both assess data quality and highlight novel and interesting information.


PLOS Computational Biology | 2012

Automatic Filtering and Substantiation of Drug Safety Signals

Anna Bauer-Mehren; Erik M. van Mullingen; Paul Avillach; Maria C. Carrascosa; Ricard Garcia-Serna; Janet Piñero; Bharat Singh; Pedro Lopes; José Luís Oliveira; Gayo Diallo; Ernst Ahlberg Helgee; Scott Boyer; Jordi Mestres; Ferran Sanz; Jan A. Kors; Laura I. Furlong

Drug safety issues pose serious health threats to the population and constitute a major cause of mortality worldwide. Due to the prominent implications to both public health and the pharmaceutical industry, it is of great importance to unravel the molecular mechanisms by which an adverse drug reaction can be potentially elicited. These mechanisms can be investigated by placing the pharmaco-epidemiologically detected adverse drug reaction in an information-rich context and by exploiting all currently available biomedical knowledge to substantiate it. We present a computational framework for the biological annotation of potential adverse drug reactions. First, the proposed framework investigates previous evidences on the drug-event association in the context of biomedical literature (signal filtering). Then, it seeks to provide a biological explanation (signal substantiation) by exploring mechanistic connections that might explain why a drug produces a specific adverse reaction. The mechanistic connections include the activity of the drug, related compounds and drug metabolites on protein targets, the association of protein targets to clinical events, and the annotation of proteins (both protein targets and proteins associated with clinical events) to biological pathways. Hence, the workflows for signal filtering and substantiation integrate modules for literature and database mining, in silico drug-target profiling, and analyses based on gene-disease networks and biological pathways. Application examples of these workflows carried out on selected cases of drug safety signals are discussed. The methodology and workflows presented offer a novel approach to explore the molecular mechanisms underlying adverse drug reactions.


Respiratory Research | 2014

Network medicine analysis of COPD multimorbidities

Solène Grosdidier; Antoni Ferrer; Rosa Faner; Janet Piñero; Josep Roca; Borja G. Cosío; Alvar Agusti; Joaquim Gea; Ferran Sanz; Laura I. Furlong

BackgroundPatients with chronic obstructive pulmonary disease (COPD) often suffer concomitant disorders that worsen significantly their health status and vital prognosis. The pathogenic mechanisms underlying COPD multimorbidities are not completely understood, thus the exploration of potential molecular and biological linkages between COPD and their associated diseases is of great interest.MethodsWe developed a novel, unbiased, integrative network medicine approach for the analysis of the diseasome, interactome, the biological pathways and tobacco smoke exposome, which has been applied to the study of 16 prevalent COPD multimorbidities identified by clinical experts.ResultsOur analyses indicate that all COPD multimorbidities studied here are related at the molecular and biological level, sharing genes, proteins and biological pathways. By inspecting the connections of COPD with their associated diseases in more detail, we identified known biological pathways involved in COPD, such as inflammation, endothelial dysfunction or apoptosis, serving as a proof of concept of the methodology. More interestingly, we found previously overlooked biological pathways that might contribute to explain COPD multimorbidities, such as hemostasis in COPD multimorbidities other than cardiovascular disorders, and cell cycle pathway in the association of COPD with depression. Moreover, we also observed similarities between COPD multimorbidities at the pathway level, suggesting common biological mechanisms for different COPD multimorbidities. Finally, chemicals contained in the tobacco smoke target an average of 69% of the identified proteins participating in COPD multimorbidities.ConclusionsThe network medicine approach presented here allowed the identification of plausible molecular links between COPD and comorbid diseases, and showed that many of them are targets of the tobacco exposome, proposing new areas of research for understanding the molecular underpinning of COPD multimorbidities.


Bioinformatics | 2015

PsyGeNET: a knowledge platform on psychiatric disorders and their genes.

Alba Gutiérrez-Sacristán; Solène Grosdidier; Olga Valverde; Marta Torrens; Àlex Bravo; Janet Piñero; Ferran Sanz; Laura I. Furlong

Summary: PsyGeNET (Psychiatric disorders and Genes association NETwork) is a knowledge platform for the exploratory analysis of psychiatric diseases and their associated genes. PsyGeNET is composed of a database and a web interface supporting data search, visualization, filtering and sharing. PsyGeNET integrates information from DisGeNET and data extracted from the literature by text mining, which has been curated by domain experts. It currently contains 2642 associations between 1271 genes and 37 psychiatric disease concepts. In its first release, PsyGeNET is focused on three psychiatric disorders: major depression, alcohol and cocaine use disorders. PsyGeNET represents a comprehensive, open access resource for the analysis of the molecular mechanisms underpinning psychiatric disorders and their comorbidities. Availability and implementation: The PysGeNET platform is freely available at http://www.psygenet.org/. The PsyGeNET database is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Bioinformatics | 2016

DisGeNET-RDF: harnessing the innovative power of the Semantic Web to explore the genetic basis of diseases

Núria Queralt-Rosinach; Janet Piñero; Àlex Bravo; Ferran Sanz; Laura I. Furlong

Motivation: DisGeNET-RDF makes available knowledge on the genetic basis of human diseases in the Semantic Web. Gene-disease associations (GDAs) and their provenance metadata are published as human-readable and machine-processable web resources. The information on GDAs included in DisGeNET-RDF is interlinked to other biomedical databases to support the development of bioinformatics approaches for translational research through evidence-based exploitation of a rich and fully interconnected linked open data. Availability and implementation: http://rdf.disgenet.org/ Contact: [email protected]


Scientific Reports | 2016

Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing.

Janet Piñero; Ariel Berenstein; Abel Gonzalez-Perez; Ariel Chernomoretz; Laura I. Furlong

Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules.


PLOS ONE | 2015

Mining the Modular Structure of Protein Interaction Networks

Ariel Berenstein; Janet Piñero; Laura I. Furlong; Ariel Chernomoretz

Background Cluster-based descriptions of biological networks have received much attention in recent years fostered by accumulated evidence of the existence of meaningful correlations between topological network clusters and biological functional modules. Several well-performing clustering algorithms exist to infer topological network partitions. However, due to respective technical idiosyncrasies they might produce dissimilar modular decompositions of a given network. In this contribution, we aimed to analyze how alternative modular descriptions could condition the outcome of follow-up network biology analysis. Methodology We considered a human protein interaction network and two paradigmatic cluster recognition algorithms, namely: the Clauset-Newman-Moore and the infomap procedures. We analyzed to what extent both methodologies yielded different results in terms of granularity and biological congruency. In addition, taking into account Guimera’s cartographic role characterization of network nodes, we explored how the adoption of a given clustering methodology impinged on the ability to highlight relevant network meso-scale connectivity patterns. Results As a case study we considered a set of aging related proteins and showed that only the high-resolution modular description provided by infomap, could unveil statistically significant associations between them and inter/intra modular cartographic features. Besides reporting novel biological insights that could be gained from the discovered associations, our contribution warns against possible technical concerns that might affect the tools used to mine for interaction patterns in network biology studies. In particular our results suggested that sub-optimal partitions from the strict point of view of their modularity levels might still be worth being analyzed when meso-scale features were to be explored in connection with external source of biological knowledge.


Annals of Oncology | 2017

A systems approach identifies time-dependent associations of multimorbidities with pancreatic cancer risk

Paulina Gomez-Rubio; Valentina Rosato; Mirari Marquez; Cristina Bosetti; Esther Molina-Montes; Marta Rava; Janet Piñero; Christoph W. Michalski; Antonio Farré; X. Molero; Matthias Löhr; Lucas Ilzarbe; José Perea; William Greenhalf; Michael O’Rorke; Adonina Tardón; Thomas M. Gress; Víctor Manuel Barberá; Tatjana Crnogorac-Jurcevic; Luís Muñoz-Bellvís; Enrique Dominguez-Munoz; Alba Gutiérrez-Sacristán; J. Balsells; Eithne Costello; Carmen Guillén-Ponce; J. Huang; Mar Iglesias; Jörg Kleeff; Bo Kong; Josefina Mora

Background Pancreatic ductal adenocarcinoma (PDAC) is usually diagnosed in late adulthood; therefore, many patients suffer or have suffered from other diseases. Identifying disease patterns associated with PDAC risk may enable a better characterization of high-risk patients. Methods Multimorbidity patterns (MPs) were assessed from 17 self-reported conditions using hierarchical clustering, principal component, and factor analyses in 1705 PDAC cases and 1084 controls from a European population. Their association with PDAC was evaluated using adjusted logistic regression models. Time since diagnosis of morbidities to PDAC diagnosis/recruitment was stratified into recent (<3 years) and long term (≥3 years). The MPs and PDAC genetic networks were explored with DisGeNET bioinformatics-tool which focuses on gene-diseases associations available in curated databases. Results Three MPs were observed: gastric (heartburn, acid regurgitation, Helicobacter pylori infection, and ulcer), metabolic syndrome (obesity, type-2 diabetes, hypercholesterolemia, and hypertension), and atopic (nasal allergies, skin allergies, and asthma). Strong associations with PDAC were observed for ≥2 recently diagnosed gastric conditions [odds ratio (OR), 6.13; 95% confidence interval CI 3.01-12.5)] and for ≥3 recently diagnosed metabolic syndrome conditions (OR, 1.61; 95% CI 1.11-2.35). Atopic conditions were negatively associated with PDAC (high adherence score OR for tertile III, 0.45; 95% CI, 0.36-0.55). Combining type-2 diabetes with gastric MP resulted in higher PDAC risk for recent (OR, 7.89; 95% CI 3.9-16.1) and long-term diagnosed conditions (OR, 1.86; 95% CI 1.29-2.67). A common genetic basis between MPs and PDAC was observed in the bioinformatics analysis. Conclusions Specific multimorbidities aggregate and associate with PDAC in a time-dependent manner. A better characterization of a high-risk population for PDAC may help in the early diagnosis of this cancer. The common genetic basis between MP and PDAC points to a mechanistic link between these conditions.

Collaboration


Dive into the Janet Piñero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferran Sanz

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Àlex Bravo

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Baldo Oliva

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emre Guney

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge