Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex G. Papageorge is active.

Publication


Featured researches published by Alex G. Papageorge.


The EMBO Journal | 1984

Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus.

B. M. Willumsen; K Norris; Alex G. Papageorge; N. Hubbert; Douglas R. Lowy

Previous studies of premature chain termination mutants and in frame deletion mutants of the p21 ras transforming protein encoded by the transforming gene of Harvey murine sarcoma virus (Ha‐MuSV) have suggested that the C terminus is required for cellular transformation, lipid binding, and membrane localization. We have now further characterized the post‐translational processing of these mutants and have also studied two C‐terminal v‐rasH point mutants: one encodes serine in place of cysteine‐186, the other threonine for valine‐187. The Thr‐187 mutant was transformation‐competent, and its p21 protein was processed normally, as was the p21 encoded by a transformation‐competent deletion mutant from which amino acids 166‐175 had been deleted. The Ser‐186 mutant was defective for transformation. The p21s encoded by the Ser‐186 mutant and by the previously described transformation‐defective mutants did not undergo the posttranslational processing common to biologically active ras proteins: their electrophoretic migration rate did not change, they remained in the cytosol, and they failed to bind lipid. Since the cell‐encoded ras proteins also contain this cysteine, we conclude that this amino acid residue is required for all ras proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities

Xiaolan Qian; Guorong Li; Holly K. Asmussen; Laura Asnaghi; William C. Vass; Richard Braverman; Kenneth M. Yamada; Nicholas C. Popescu; Alex G. Papageorge; Douglas R. Lowy

The three deleted in liver cancer genes (DLC1–3) encode Rho-GTPase-activating proteins (RhoGAPs) whose expression is frequently down-regulated or silenced in a variety of human malignancies. The RhoGAP activity is required for full DLC-dependent tumor suppressor activity. Here we report that DLC1 and DLC3 bind to human tensin1 and its chicken homolog. The binding has been mapped to the tensin Src homology 2 (SH2) and phosphotyrosine binding (PTB) domains at the C terminus of tensin proteins. Distinct DLC1 sequences are required for SH2 and PTB binding. DCL binding to both domains is constitutive under basal conditions. The SH2 binding depends on a tyrosine in DCL1 (Y442) but is phosphotyrosine-independent, a highly unusual feature for SH2 binding. DLC1 competed with the binding of other proteins to the tensin C terminus, including β3-integrin binding to the PTB domain. Point mutation of a critical tyrosine residue (Y442F) in DLC1 rendered the protein deficient for binding the tensin SH2 domain and binding full-length tensin. The Y442F protein was diffusely cytoplasmic, in contrast to the localization of wild-type DLC1 to focal adhesions, but it retained the ability to reduce the intracellular levels of Rho-GTP. The Y442F mutant displayed markedly reduced biological activity, as did a mutant that was RhoGAP-deficient. The results suggest that DLC1 is a multifunctional protein whose biological activity depends on cooperation between its tensin binding and RhoGAP activities, although neither activity depends on the other.


The EMBO Journal | 2000

The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties

Xiaolan Qian; Luis M. Esteban; William C. Vass; Cheerag Upadhyaya; Alex G. Papageorge; Kate Yienger; Jerrold M. Ward; Douglas R. Lowy; Eugenio Santos

Targeted disruption of both alleles of mouse sos1, which encodes a Ras‐specific exchange factor, conferred mid‐gestational embryonic lethality that was secondary to impaired placental development and was associated with very low placental ERK activity. The trophoblastic layers of sos1−/− embryos were poorly developed, correlating with high sos1 expression in wild‐type trophoblasts. A sos1−/− cell line, which expressed readily detectable levels of the closely related Sos2 protein, formed complexes between Sos2, epidermal growth factor receptor (EGFR) and Shc efficiently, gave normal Ras·GTP and ERK responses when treated with EGF for ≤10 min and was transformed readily by activated Ras. However, the sos1−/− cells were resistant to transformation by v‐Src or by overexpressed EGFR and continuous EGF treatment, unlike sos1+/− or wild‐type cells. This correlated with Sos2 binding less efficiently than Sos1 to EGFR and Shc in cells treated with EGF for ≥90 min or to v‐Src and Shc in v‐Src‐expressing cells, and with less ERK activity. We conclude that Sos1 participates in both short‐ and long‐term signaling, while Sos2‐dependent signals are predominantly short‐term.


The EMBO Journal | 1992

Isolation of multiple mouse cDNAs with coding homology to Saccharomyces cerevisiae CDC25: identification of a region related to Bcr, Vav, Dbl and CDC24.

H Cen; Alex G. Papageorge; R Zippel; Douglas R. Lowy; K Zhang

In Saccharomyces cerevisiae, the product of the CDC25 gene is an essential Ras activator that appears to function by stimulating guanine nucleotide exchange on Ras. Using the ability of a mouse cDNA expression library to complement yeast cells lacking functional CDC25, Martegani et al. have identified a 1.7 kb partial cDNA from a gene, designated CDC25Mm, with homology to CDC25. We have now screened a mouse brain cDNA library to identify full‐length clones of CDC25Mm. This cloning has led to the isolation of six distinct full‐length cDNAs, each of which appear to be derived from the CDC25Mm gene, since their 3′ 2 kb appear to be identical and to encode the same 661 C‐terminal amino acids. Three cDNAs are predicted to encode protein products of 666 or 667 amino acids. The other three cDNAs encode products that are 836, 1120 and 1260 amino acids, respectively. A 241 amino acid region near the N‐terminus of the two largest products was found to have homology to a domain shared by Bcr, Vav, Dbl and CDC24. Polyclonal antibodies raised to a peptide encoded by all the cDNAs have identified at least two protein products in NIH3T3 fibroblasts. Their apparent molecular weights are 75 and 95 kDa, which correspond closely to those predicted to be encoded, respectively, by the two shorter classes of cDNAs. In NIH3T3, the 95 kDa form is much more abundant than the 75 kDa form, while PC‐12 pheochromocytoma cells contain relatively high levels of the 75 kDa form. We conclude that CDC25Mm is a complex gene whose protein products are regulated in a tissue‐specific manner.


Molecular and Cellular Biology | 1999

RAS-SPECIFIC EXCHANGE FACTOR GRF : OLIGOMERIZATION THROUGH ITS DBL HOMOLOGY DOMAIN AND CALCIUM-DEPENDENT ACTIVATION OF RAF

Pieter H. Anborgh; Xiaolan Qian; Alex G. Papageorge; William C. Vass; Jeffrey E. DeClue; Douglas R. Lowy

ABSTRACT The full-length versions of the Ras-specific exchange factors Ras-GRF1 (GRF1) and Ras-GRF2 (GRF2), which are expressed in brain and a restricted number of other organs, possess an ionomycin-dependent activation of Erk mitogen-activated protein kinase activity in 293T cells (C. L. Farnsworth et al., Nature 376:524–527, 1995; N. P. Fam et al., Mol. Cell. Biol. 17:1396–1406, 1996). Each GRF protein contains a Dbl homology (DH) domain. A yeast two-hybrid screen was used to identify polypeptides that associate with the DH domain of GRF1. In this screen, a positive cDNA clone from a human brain cDNA library was isolated which consisted of the GRF2 DH domain and its adjacent ilimaquinone domain. Deletion analysis verified that the two-hybrid interaction required only the DH domains, and mutation of Leu-263 to Gln (L263Q) in the N terminus of the GRF1 DH domain abolished the two-hybrid interaction, while a cluster of more C-terminally located mutations in the DH domain did not eliminate the interaction. Oligomers between GRF1 and GRF2 were detected in a rat brain extract, and forced expression of GRF1 and GRF2 in cultured mammalian cells formed homo- and hetero-oligomers. Introduction of the L263Q mutation in GRF1 led to a protein that was deficient in oligomer formation, while GRF1 containing the DH cluster mutations formed homo-oligomers with an efficiency similar to that of wild type. Compared to wild-type GRF1, the focus-forming activity on NIH 3T3 cells of the GRF1 DH cluster mutant was reduced, while the L263Q mutant was inactive. Both mutants were impaired in their ability to mediate ionomycin-dependent Erk activity in 293T cells. In the absence of ionomycin, 293T cells expressing wild-type GRF1 contained much higher levels of Ras-GTP than control cells; the increase in Erk activity induced by ionomycin in the GRF1-expressing cells also induced a concomitant increase in Raf kinase activity, but without a further increase in the level Ras-GTP. We conclude that GRF1 and GRF2 can form homo- and hetero-oligomers via their DH domains, that mutational inactivation of oligomer formation by GRF1 is associated with impaired biological and signaling activities, and that in 293T cells GRF1 mediates at least two pathways for Raf activation: one a constitutive signal that is mainly Ras-dependent, and one an ionomycin-induced signal that cooperates with the constitutive signal without further augmenting the level of GTP-Ras.


Molecular and Cellular Biology | 1998

N Terminus of Sos1 Ras Exchange Factor: Critical Roles for the Dbl and Pleckstrin Homology Domains

Xiaolan Qian; William C. Vass; Alex G. Papageorge; Pieter H. Anborgh; Douglas R. Lowy

ABSTRACT We have studied the functional importance of the N terminus of mouse Sos1 (mSos1), a ubiquitously expressed Ras-specific guanine nucleotide exchange factor whose C-terminal sequences bind Grb-2. Consistent with previous reports, addition of a myristoylation signal to mSos1 (MyrSos1) rendered it transforming for NIH 3T3 cells and deletion of the mSos C terminus (MyrSos1-ΔC) did not interfere with this activity. However, an N-terminally deleted myristoylated mSos1 protein (MyrSos1-ΔN) was transformation defective, although the protein was stable and localized to the membrane. Site-directed mutagenesis was used to examine the role of the Dbl and pleckstrin homology (PH) domains located in the N terminus. When mutations in the PH domain were introduced into two conserved amino acids either singly or together in MyrSos1 or MyrSos1-ΔC, the transforming activity was severely impaired. An analogous reduction in biological activity was seen when a cluster of point mutations was engineered into the Dbl domain. The mitogen-activation protein (MAP) kinase activities induced by the various Dbl and PH mutants of MyrSos1 correlated with their biological activities. When NIH 3T3 cells were transfected with a myristoylated Sos N terminus, their growth response to epidermal growth factor (EGF), platelet-derived growth factor, lysophosphatidic acid or serum was greatly impaired. The dominant inhibitory biological activity of the N terminus correlated with its ability to impair EGF-dependent activation of GTP-Ras and of MAP kinase, as well with the ability of endogenous Sos to form a stable complex with activated EGF receptors. The N terminus with mutations in the Dbl and PH domains was much less inhibitory in these biological and biochemical assays. In contrast to wild-type Sos1, nonmyristoylated versions of Sos1-ΔN and Sos1-ΔC did not form a stable complex with activated EGF receptors. We conclude that the Dbl and PH domains are critical for Sos function and that stable association of Sos with activated EGF receptors requires both the Sos N and C termini.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Full activity of the deleted in liver cancer 1 (DLC1) tumor suppressor depends on an LD-like motif that binds talin and focal adhesion kinase (FAK).

Guorong Li; Xiaoli Du; William C. Vass; Alex G. Papageorge; Douglas R. Lowy; Xiaolan Qian

The deleted in liver cancer 1 (DLC1) tumor suppressor gene, which is frequently inactivated in cancer, encodes a Rho-GAP (GTPase activating protein) focal adhesion protein whose negative regulation of Rho-GTPases is necessary but not sufficient for its full tumor suppressor activity. Here, we report that DLC1 forms a complex with two prooncogenic focal adhesion proteins, talin and the focal adhesion kinase (FAK). We identified an 8-aa sequence (residues 469LDDILYHV476) in DLC1 and designated it an LD-like motif, because it shares homology with the LD motifs of paxillin. This motif was necessary for DLC1 binding to talin and FAK, because a DLC1 mutant, from which six of the residues have been deleted, and another mutant carrying amino acid substitutions in three of the residues are deficient for binding both proteins and localization of DLC1 to focal adhesions. FAK binding was independent of talin and vice versa. In bioassays, both DLC1 mutants were less active than wild-type (WT) DLC1, although the ability of the mutants to negatively regulate overall Rho-GTP was not impaired. We conclude that the LD-like motif, which binds talin and FAK, is required for the full tumor suppressor activity of DLC1 and contributes to the association of DLC1 with focal adhesions.


Cancer Cell | 2009

The Tensin-3 Protein, Including its SH2 Domain, Is Phosphorylated by Src and Contributes to Tumorigenesis and Metastasis

Xiaolan Qian; Guorong Li; William C. Vass; Alex G. Papageorge; Renard C. Walker; Laura Asnaghi; Peter J. Steinbach; Giovanna Tosato; Kent W. Hunter; Douglas R. Lowy

In cell lines from advanced lung cancer, breast cancer, and melanoma, endogenous tensin-3 contributes to cell migration, anchorage-independent growth, and tumorigenesis. Although SH2 domains have not been reported previously to be phosphorylated, the tensin-3 SH2 domain is a physiologic substrate for Src. Tyrosines in the SH2 domain contribute to the biological activity of tensin-3, and phosphorylation of these tyrosines can regulate ligand binding. In a mouse breast cancer model, tensin-3 tyrosines are phosphorylated in a Src-associated manner in primary tumors, and experimental metastases induced by tumor-derived cell lines depend on endogenous tensin-3. Thus, tensin-3 is implicated as an oncoprotein regulated by Src and possessing an SH2 domain with a previously undescribed mechanism for the regulation of ligand binding.


Oncogene | 2010

E-cadherin negatively regulates neoplastic growth in non-small cell lung cancer: role of Rho GTPases

Laura Asnaghi; William C. Vass; R Quadri; P M Day; Xiaolan Qian; Richard Braverman; Alex G. Papageorge; Douglas R. Lowy

Non-small cell lung cancers (NSCLC) that express the cell surface adhesion protein E-cadherin may carry a better prognosis than E-cadherin-negative tumors. Here, we found substantial inhibition of anchorage-independent growth in soft agar and cell migration in each of four NSCLC lines stably transfected with E-cadherin. The inhibitory effects were independent of the EGFR and β-catenin/Wnt-signaling pathways. However, E-cadherin expression was associated with an adhesion-dependent reduction in the activity of Rho family proteins, RhoA in two lines and Cdc42 in the other two. The reduction of RhoA activity was dependent on DLC-1 Rho-GAP and p190 Rho-GAP and associated with an increase in a membrane-associated p190 Rho-GAP/p120 Ras-GAP complex. In parental cells with high levels of RhoA-GTP, siRNA-mediated knock-down of RhoA reduced cell migration and agar growth in a manner analogous to E-cadherin. In parental cells with high levels of Cdc42-GTP, transfection of a Cdc42 dominant-negative mutant reduced cell growth and migration similarly to cells expressing E-cadherin. Thus, E-cadherin can negatively regulate cell proliferation and migration in NSCLC by reducing the level of the predominant active form of Rho family protein, RhoA or Cdc42. These proteins can be considered downstream effectors of E-cadherin and might represent therapeutic targets in some NSCLC.


Molecular and Cellular Biology | 1991

The bovine papillomavirus E5 oncogene can cooperate with ras : identification of p21 amino acids critical for transformation by c-rasH but not v-rasH

Berthe M. Willumsen; William C. Vass; Thierry Velu; Alex G. Papageorge; John T. Schiller; Douglas R. Lowy

We have previously used a series of insertion-deletion mutants of the mutationally activated v-rasH gene to identify several regions of the encoded protein that are dispensable for cellular transformation (B. M. Willumsen, A. G. Papageorge, H.-F. Kung, E. Bekesi, T. Robins, M. Johnsen, W. C. Vass, and D. R. Lowy, Mol. Cell. Biol. 6:2646-2654, 1986). To determine if some of these amino acids are more important for the biological activity of c-rasH, we have now tested many of the same insertion-deletion mutants in the c-rasH form for their ability to transform NIH 3T3 cells. Since the transforming activity of c-rasH is low, we have used cotransfection with the bovine papillomavirus (BPV) genome to develop a more sensitive transformation assay for c-rasH mutants. The increased sensitivity of the assay, which is seen both in focal transformation and in anchorage-independent growth, is mediated by cooperation between the BPV E5 gene and ras. E5-dependent cooperation was seen for v-rasH as well as for c-rasH, which suggests that the major effect of E5 was to increase the susceptibility of the cell to transformation to a given level of ras activity. The cooperation assay was used to test the potential importance, in c-rasH, of codons 93 to 108, 123 to 130, and 166 to 183, which were nonessential for v-rasH transformation. Relative to the respective transforming activity of wild-type c-rasH and v-rasH, mutants with lesions in codons 102 and 103 were significantly less active in their c-rasH forms than in their v-rasH forms. We conclude that a region including amino acids 102 and 103 encodes a function that is more critical to c-rasH than to v-rasH. Guanine nucleotide exchange is one function that is compatible with such a phenotype.

Collaboration


Dive into the Alex G. Papageorge's collaboration.

Top Co-Authors

Avatar

Douglas R. Lowy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xiaolan Qian

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William C. Vass

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Brajendra K. Tripathi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dunrui Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey E. DeClue

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Ke Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge