Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philipp Mertins is active.

Publication


Featured researches published by Philipp Mertins.


Nature | 2014

Proteogenomic characterization of human colon and rectal cancer

Bing Zhang; Jing Wang; Xiaojing Wang; Jing Zhu; Qi Liu; Zhiao Shi; Matthew C. Chambers; Lisa J. Zimmerman; Kent Shaddox; Sangtae Kim; Sherri R. Davies; Sean Wang; Pei Wang; Christopher R. Kinsinger; Robert Rivers; Henry Rodriguez; R. Reid Townsend; Matthew J. Ellis; Steven A. Carr; David L. Tabb; Robert J. Coffey; Robbert J. C. Slebos; Daniel C. Liebler; Michael A. Gillette; Karl R. Klauser; Eric Kuhn; D. R. Mani; Philipp Mertins; Karen A. Ketchum; Amanda G. Paulovich

Extensive genomic characterization of human cancers presents the problem of inference from genomic abnormalities to cancer phenotypes. To address this problem, we analysed proteomes of colon and rectal tumours characterized previously by The Cancer Genome Atlas (TCGA) and perform integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. Messenger RNA transcript abundance did not reliably predict protein abundance differences between tumours. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA ‘microsatellite instability/CpG island methylation phenotype’ transcriptomic subtype, but had distinct mutation, methylation and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates, including HNF4A (hepatocyte nuclear factor 4, alpha), TOMM34 (translocase of outer mitochondrial membrane 34) and SRC (SRC proto-oncogene, non-receptor tyrosine kinase). Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology.


Nature | 2016

Proteogenomics connects somatic mutations to signalling in breast cancer

Philipp Mertins; D. R. Mani; Kelly V. Ruggles; Michael A. Gillette; Karl R. Clauser; Pei Wang; Xianlong Wang; Jana W. Qiao; Song Cao; Francesca Petralia; Emily Kawaler; Filip Mundt; Karsten Krug; Zhidong Tu; Jonathan T. Lei; Michael L. Gatza; Matthew D. Wilkerson; Charles M. Perou; Venkata Yellapantula; Kuan Lin Huang; Chenwei Lin; Michael D. McLellan; Ping Yan; Sherri R. Davies; R. Reid Townsend; Steven J. Skates; Jing Wang; Bing Zhang; Christopher R. Kinsinger; Mehdi Mesri

Summary Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. We describe quantitative mass spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers of which 77 provided high-quality data. Integrated analyses allowed insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. The 5q trans effects were interrogated against the Library of Integrated Network-based Cellular Signatures, thereby connecting CETN3 and SKP1 loss to elevated expression of EGFR, and SKP1 loss also to increased SRC. Global proteomic data confirmed a stromal-enriched group in addition to basal and luminal clusters and pathway analysis of the phosphoproteome identified a G Protein-coupled receptor cluster that was not readily identified at the mRNA level. Besides ERBB2, other amplicon-associated, highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.


Nature Methods | 2013

Integrated proteomic analysis of post-translational modifications by serial enrichment

Philipp Mertins; Jana W. Qiao; Jinal Patel; Namrata D. Udeshi; Karl R. Clauser; D. R. Mani; Michael Burgess; Michael A. Gillette; Jacob D. Jaffe; Steven A. Carr

We report a mass spectrometry–based method for the integrated analysis of protein expression, phosphorylation, ubiquitination and acetylation by serial enrichments of different post-translational modifications (SEPTM) from the same biological sample. This technology enabled quantitative analysis of nearly 8,000 proteins and more than 20,000 phosphorylation, 15,000 ubiquitination and 3,000 acetylation sites per experiment, generating a holistic view of cellular signal transduction pathways as exemplified by analysis of bortezomib-treated human leukemia cells.


Cell | 2013

High-Resolution Mapping Reveals a Conserved, Widespread, Dynamic mRNA Methylation Program in Yeast Meiosis

Schraga Schwartz; Sudeep D. Agarwala; Maxwell R. Mumbach; Marko Jovanovic; Philipp Mertins; Alexander A. Shishkin; Yuval Tabach; Tarjei S. Mikkelsen; Rahul Satija; Gary Ruvkun; Steven A. Carr; Eric S. Lander; Gerald R. Fink; Aviv Regev

N(6)-methyladenosine (m(6)A) is the most ubiquitous mRNA base modification, but little is known about its precise location, temporal dynamics, and regulation. Here, we generated genomic maps of m(6)A sites in meiotic yeast transcripts at nearly single-nucleotide resolution, identifying 1,308 putatively methylated sites within 1,183 transcripts. We validated eight out of eight methylation sites in different genes with direct genetic analysis, demonstrated that methylated sites are significantly conserved in a related species, and built a model that predicts methylated sites directly from sequence. Sites vary in their methylation profiles along a dense meiotic time course and are regulated both locally, via predictable methylatability of each site, and globally, through the core meiotic circuitry. The methyltransferase complex components localize to the yeast nucleolus, and this localization is essential for mRNA methylation. Our data illuminate a conserved, dynamically regulated methylation program in yeast meiosis and provide an important resource for studying the function of this epitranscriptomic modification.


Cell | 2015

A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks

Oren Parnas; Marko Jovanovic; Thomas Eisenhaure; Rebecca H. Herbst; Atray Dixit; Chun Jimmie Ye; Dariusz Przybylski; Randall Jeffrey Platt; Itay Tirosh; Neville E. Sanjana; Ophir Shalem; Rahul Satija; Raktima Raychowdhury; Philipp Mertins; Steven A. Carr; Feng Zhang; Nir Hacohen; Aviv Regev

Finding the components of cellular circuits and determining their functions systematically remains a major challenge in mammalian cells. Here, we introduced genome-wide pooled CRISPR-Cas9 libraries into dendritic cells (DCs) to identify genes that control the induction of tumor necrosis factor (Tnf) by bacterial lipopolysaccharide (LPS), a key process in the host response to pathogens, mediated by the Tlr4 pathway. We found many of the known regulators of Tlr4 signaling, as well as dozens of previously unknown candidates that we validated. By measuring protein markers and mRNA profiles in DCs that are deficient in known or candidate genes, we classified the genes into three functional modules with distinct effects on the canonical responses to LPS and highlighted functions for the PAF complex and oligosaccharyltransferase (OST) complex. Our findings uncover new facets of innate immune circuits in primary cells and provide a genetic approach for dissection of mammalian cell circuits.


Science | 2015

Dynamic profiling of the protein life cycle in response to pathogens

Marko Jovanovic; Michael S. Rooney; Philipp Mertins; Dariusz Przybylski; Nicolas Chevrier; Rahul Satija; Edwin H. Rodriguez; Alexander P. Fields; Schraga Schwartz; Raktima Raychowdhury; Maxwell R. Mumbach; Thomas Eisenhaure; Michal Rabani; Dave Gennert; Diana Lu; Toni Delorey; Jonathan S. Weissman; Steven A. Carr; Nir Hacohen; Aviv Regev

How the immune system readies for battle Although gene expression is tightly controlled at both the RNA and protein levels, the quantitative contribution of each step, especially during dynamic responses, remains largely unknown. Indeed, there has been much debate whether changes in RNA level contribute substantially to protein-level regulation. Jovanovic et al. built a genome-scale model of the temporal dynamics of differential protein expression during the stimulation of immunological dendritic cells (see the Perspective by Li and Biggin). Newly stimulated functions involved the up-regulation of specific RNAs and concomitant increases in the levels of the proteins they encode, whereas housekeeping functions were regulated posttranscriptionally at the protein level. Science, this issue 10.1126/science.1259038; see also p. 1066 Levels of “housekeeping” proteins are maintained directly, but those of immune response proteins depend on more transcription. [Also see Perspective by Li and Biggin] INTRODUCTION Mammalian gene expression is tightly controlled through the interplay between the RNA and protein life cycles. Although studies of individual genes have shown that regulation of each of these processes is important for correct protein expression, the quantitative contribution of each step to changes in protein expression levels remains largely unknown and much debated. Many studies have attempted to address this question in the context of steady-state protein levels, and comparing steady-state RNA and protein abundances has indicated a considerable discrepancy between RNA and protein levels. In contrast, only a few studies have attempted to shed light on how changes in each of these processes determine differential protein expression—either relative (ratios) or absolute (differences)—during dynamic responses, and only one recent report has attempted to quantitate each process. Understanding these contributions to a dynamic response on a systems scale is essential both for deciphering how cells deploy regulatory processes to accomplish physiological changes and for discovering key molecular regulators controlling each process. RATIONALE We developed an integrated experimental and computational strategy to quantitatively assess how protein levels are maintained in the context of a dynamic response and applied it to the model response of mouse immune bone marrow–derived dendritic cells (DCs) to stimulation with lipopolysaccharide (LPS). We used a modified pulsed-SILAC (stable isotope labeling with amino acids in cell culture) approach to track newly synthesized and previously labeled proteins over the first 12 hours of the response. In addition, we independently measured replicate RNA-sequencing profiles under the same conditions. We devised a computational strategy to infer per-mRNA translation rates and protein degradation rates at each time point from the temporal transcriptional profiles and pulsed-SILAC proteomics data. This allowed us to build a genome-scale quantitative model of the temporal dynamics of differential protein expression in DCs responding to LPS. RESULTS We found that before stimulation, mRNA levels contribute to overall protein expression levels more than double the combined contribution of protein translation and degradation rates. Upon LPS stimulation, changes in mRNA abundance play an even more dominant role in dynamic changes in protein levels, especially in immune response genes. Nevertheless, several protein modules—especially the preexisting proteome of proteins performing basic cellular functions—are predominantly regulated in stimulated cells at the level of protein translation or degradation, accounting for over half of the absolute change in protein molecules in the cell. In particular, despite the repression of their transcripts, the level of many proteins in the translational machinery is up-regulated upon LPS stimulation because of significantly increased translation rates, and elevated protein degradation of mitochondrial proteins plays a central role in remodeling cellular energy metabolism. CONCLUSIONS Our results support a model in which the induction of novel cellular functions is primarily driven through transcriptional changes, whereas regulation of protein production or degradation updates the levels of preexisting functions as required for an activated state. Our approach for building quantitative genome-scale models of the temporal dynamics of protein expression is broadly applicable to other dynamic systems. Dynamic protein expression regulation in dendritic cells upon stimulation with LPS. We developed an integrated experimental and computational strategy to quantitatively assess how protein levels are maintained in the context of a dynamic response. Our results support a model in which the induction of novel cellular functions is primarily driven through transcriptional changes, whereas regulation of protein production or degradation updates the levels of preexisting functions. Protein expression is regulated by the production and degradation of messenger RNAs (mRNAs) and proteins, but their specific relationships remain unknown. We combine measurements of protein production and degradation and mRNA dynamics so as to build a quantitative genomic model of the differential regulation of gene expression in lipopolysaccharide-stimulated mouse dendritic cells. Changes in mRNA abundance play a dominant role in determining most dynamic fold changes in protein levels. Conversely, the preexisting proteome of proteins performing basic cellular functions is remodeled primarily through changes in protein production or degradation, accounting for more than half of the absolute change in protein molecules in the cell. Thus, the proteome is regulated by transcriptional induction for newly activated cellular functions and by protein life-cycle changes for remodeling of preexisting functions.


Cell | 2016

Integrated proteogenomic characterization of human high-grade serous ovarian cancer

Hui Zhang; Tao Liu; Zhen Zhang; Samuel H. Payne; Bai Zhang; Jason E. McDermott; Jian-Ying Zhou; Vladislav A. Petyuk; Li Chen; Debjit Ray; Shisheng Sun; Feng Yang; Lijun Chen; Jing Wang; Punit Shah; Seong Won Cha; Paul Aiyetan; Sunghee Woo; Yuan Tian; Marina A. Gritsenko; Therese R. Clauss; Caitlin H. Choi; Matthew E. Monroe; Stefani N. Thomas; Song Nie; Chaochao Wu; Ronald J. Moore; Kun-Hsing Yu; David L. Tabb; David Fenyö

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Cell | 2011

Systematic Discovery of TLR Signaling Components Delineates Viral-Sensing Circuits

Nicolas Chevrier; Philipp Mertins; Maxim N. Artyomov; Alex K. Shalek; Matteo Iannacone; Mark F. Ciaccio; Irit Gat-Viks; Elena Tonti; Marciela M. DeGrace; Karl R. Clauser; Manuel Garber; Thomas Eisenhaure; Nir Yosef; Jacob T. Robinson; Amy Sutton; Mette S. Andersen; David E. Root; Ulrich H. von Andrian; Richard Bradley Jones; Hongkun Park; Steven A. Carr; Aviv Regev; Ido Amit; Nir Hacohen

Deciphering the signaling networks that underlie normal and disease processes remains a major challenge. Here, we report the discovery of signaling components involved in the Toll-like receptor (TLR) response of immune dendritic cells (DCs), including a previously unkown pathway shared across mammalian antiviral responses. By combining transcriptional profiling, genetic and small-molecule perturbations, and phosphoproteomics, we uncover 35 signaling regulators, including 16 known regulators, involved in TLR signaling. In particular, we find that Polo-like kinases (Plk) 2 and 4 are essential components of antiviral pathways in vitro and in vivo and activate a signaling branch involving a dozen proteins, among which is Tnfaip2, a gene associated with autoimmune diseases but whose role was unknown. Our study illustrates the power of combining systematic measurements and perturbations to elucidate complex signaling circuits and discover potential therapeutic targets.


Molecular & Cellular Proteomics | 2014

Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels

Philipp Mertins; Feng Yang; Tao Liu; D. R. Mani; Vladislav A. Petyuk; Michael A. Gillette; Karl R. Clauser; Jana W. Qiao; Marina A. Gritsenko; Ronald J. Moore; Douglas A. Levine; R. Reid Townsend; Petra Erdmann-Gilmore; Jacqueline Snider; Sherri R. Davies; Kelly V. Ruggles; David Fenyö; R. Thomas Kitchens; Shunqiang Li; Narcisco Olvera; Fanny Dao; Henry Rodriguez; Daniel W. Chan; Daniel C. Liebler; Forest M. White; Karin D. Rodland; Gordon B. Mills; Richard D. Smith; Amanda G. Paulovich; Matthew J. Ellis

Protein abundance and phosphorylation convey important information about pathway activity and molecular pathophysiology in diseases including cancer, providing biological insight, informing drug and diagnostic development, and guiding therapeutic intervention. Analyzed tissues are usually collected without tight regulation or documentation of ischemic time. To evaluate the impact of ischemia, we collected human ovarian tumor and breast cancer xenograft tissue without vascular interruption and performed quantitative proteomics and phosphoproteomics after defined ischemic intervals. Although the global expressed proteome and most of the >25,000 quantified phosphosites were unchanged after 60 min, rapid phosphorylation changes were observed in up to 24% of the phosphoproteome, representing activation of critical cancer pathways related to stress response, transcriptional regulation, and cell death. Both pan-tumor and tissue-specific changes were observed. The demonstrated impact of pre-analytical tissue ischemia on tumor biology mandates caution in interpreting stress-pathway activation in such samples and motivates reexamination of collection protocols for phosphoprotein analysis.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of ERBB2

Heidi Greulich; Bethany Kaplan; Philipp Mertins; Tzu-Hsiu Chen; Kumiko Tanaka; Cai-Hong Yun; Xiaohong Zhang; Se-Hoon Lee; Jeonghee Cho; Lauren Ambrogio; Rachel G. Liao; Marcin Imielinski; Shantanu Banerji; Alice H. Berger; Michael S. Lawrence; Jinghui Zhang; Nam H. Pho; Sarah R. Walker; Wendy Winckler; Gad Getz; David A. Frank; William C. Hahn; Michael J. Eck; D. R. Mani; Jacob D. Jaffe; Steven A. Carr; Kwok-Kin Wong; Matthew Meyerson

We assessed somatic alleles of six receptor tyrosine kinase genes mutated in lung adenocarcinoma for oncogenic activity. Five of these genes failed to score in transformation assays; however, novel recurring extracellular domain mutations of the receptor tyrosine kinase gene ERBB2 were potently oncogenic. These ERBB2 extracellular domain mutants were activated by two distinct mechanisms, characterized by elevated C-terminal tail phosphorylation or by covalent dimerization mediated by intermolecular disulfide bond formation. These distinct mechanisms of receptor activation converged upon tyrosine phosphorylation of cellular proteins, impacting cell motility. Survival of Ba/F3 cells transformed to IL-3 independence by the ERBB2 extracellular domain mutants was abrogated by treatment with small-molecule inhibitors of ERBB2, raising the possibility that patients harboring such mutations could benefit from ERBB2-directed therapy.

Collaboration


Dive into the Philipp Mertins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. R. Mani

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Reid Townsend

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Sherri R. Davies

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge