Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander A. Kapralov is active.

Publication


Featured researches published by Alexander A. Kapralov.


Nature Nanotechnology | 2010

Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation

Valerian E. Kagan; Nagarjun V. Konduru; Weihong Feng; Brett L. Allen; Jennifer Conroy; Yuri Volkov; Irina I. Vlasova; Natalia A. Belikova; Naveena Yanamala; Alexander A. Kapralov; Yulia Y. Tyurina; Jingwen Shi; Elena R. Kisin; Ashley R. Murray; Jonathan Franks; Donna B. Stolz; Pingping Gou; Judith Klein-Seetharaman; Bengt Fadeel; Alexander Star; Anna A. Shvedova

We have shown previously that single-walled carbon nanotubes can be catalytically biodegraded over several weeks by the plant-derived enzyme, horseradish peroxidase. However, whether peroxidase intermediates generated inside human cells or biofluids are involved in the biodegradation of carbon nanotubes has not been explored. Here, we show that hypochlorite and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase catalyse the biodegradation of single-walled carbon nanotubes in vitro, in neutrophils and to a lesser degree in macrophages. Molecular modelling suggests that interactions of basic amino acids of the enzyme with the carboxyls on the carbon nanotubes position the nanotubes near the catalytic site. Importantly, the biodegraded nanotubes do not generate an inflammatory response when aspirated into the lungs of mice. Our findings suggest that the extent to which carbon nanotubes are biodegraded may be a major determinant of the scale and severity of the associated inflammatory responses in exposed individuals.


Nano Letters | 2008

Biodegradation of single-walled carbon nanotubes through enzymatic catalysis.

Brett L. Allen; Padmakar D. Kichambare; Pingping Gou; Irina I. Vlasova; Alexander A. Kapralov; Nagarjun V. Konduru; Valerian E. Kagan; Alexander Star

We show here the biodegradation of single-walled carbon nanotubes through natural, enzymatic catalysis. By incubating nanotubes with a natural horseradish peroxidase (HRP) and low concentrations of H2O2 (approximately 40 microM) at 4 degrees C over 12 weeks under static conditions, we show the increased degradation of nanotube structure. This reaction was monitored via multiple characterization methods, including transmission electron microscopy (TEM), dynamic light scattering (DLS), gel electrophoresis, mass spectrometry, and ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy. These results mark a promising possibility for carbon nanotubes to be degraded by HRP in environmentally relevant settings. This is also tempting for future studies involving biotechnological and natural (plant peroxidases) ways for degradation of carbon nanotubes in the environment.


ACS Nano | 2011

The Enzymatic Oxidation of Graphene Oxide

Gregg P. Kotchey; Brett L. Allen; Harindra Vedala; Naveena Yanamala; Alexander A. Kapralov; Yulia Y. Tyurina; Judith Klein-Seetharaman; Valerian E. Kagan; Alexander Star

Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon--the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (∼40 μM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, ultraviolet-visible, electron paramagnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gas chromatography-mass spectrometry. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Owing to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors.


Accounts of Chemical Research | 2012

A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials.

Gregg P. Kotchey; Saad A. Hasan; Alexander A. Kapralov; Seung Han Ha; Kang Kim; Anna A. Shvedova; Valerian E. Kagan; Alexander Star

Over the past three decades, revolutionary research in nanotechnology by the scientific, medical, and engineering communities has yielded a treasure trove of discoveries with diverse applications that promise to benefit humanity. With their unique electronic and mechanical properties, carbon nanomaterials (CNMs) represent a prime example of the promise of nanotechnology with applications in areas that include electronics, fuel cells, composites, and nanomedicine. Because of toxicological issues associated with CNMs, however, their full commercial potential may not be achieved. The ex vitro, in vitro, and in vivo data presented in this Account provide fundamental insights into the biopersistence of CNMs, such as carbon nanotubes and graphene, and their oxidation/biodegradation processes as catalyzed by peroxidase enzymes. We also communicate our current understanding of the mechanism for the enzymatic oxidation and biodegradation. Finally, we outline potential future directions that could enhance our mechanistic understanding of the CNM oxidation and biodegradation and could yield benefits in terms of human health and environmental safety. The conclusions presented in this Account may catalyze a rational rethinking of CNM incorporation in diverse applications. For example, armed with an understanding of how and why CNMs undergo enzyme-catalyzed oxidation and biodegradation, researchers can tailor the structure of CNMs to either promote or inhibit these processes. In nanomedical applications such as drug delivery, the incorporation of carboxylate functional groups could facilitate biodegradation of the nanomaterial after delivery of the cargo. On the other hand, in the construction of aircraft, a CNM composite should be stable to oxidizing conditions in the environment. Therefore, pristine, inert CNMs would be ideal for this application. Finally, the incorporation of CNMs with defect sites in consumer goods could provide a facile mechanism that promotes the degradation of these materials once these products reach landfills.


Nature Chemistry | 2014

A mitochondrial pathway for biosynthesis of lipid mediators

Yulia Y. Tyurina; Samuel M. Poloyac; Vladimir A. Tyurin; Alexander A. Kapralov; Jianfei Jiang; Tamil S. Anthonymuthu; Valentina I. Kapralova; Anna S. Vikulina; Mi-Yeon Jung; Michael W. Epperly; Dariush Mohammadyani; Judith Klein-Seetharaman; Travis C. Jackson; Patrick M. Kochanek; Bruce R. Pitt; Joel S. Greenberger; Yury A. Vladimirov; Hülya Bayır; Valerian E. Kagan

The central role of mitochondria in metabolic pathways and in cell death mechanisms requires sophisticated signaling systems. Essential in this signaling process is an array of lipid mediators derived from polyunsaturated fatty acids. However, the molecular machinery for the production of oxygenated polyunsaturated fatty acids is localized in the cytosol and their biosynthesis has not been identified in mitochondria. Here we report that a range of diversified polyunsaturated molecular species derived from a mitochondria-specific phospholipid, cardiolipin, are oxidized by the intermembrane space hemoprotein, cytochrome c. We show that an assortment of oxygenated cardiolipin species undergoes phospholipase A2-catalyzed hydrolysis thus generating multiple oxygenated fatty acids, including well known lipid mediators. This represents a new biosynthetic pathway for lipid mediators. We demonstrate that this pathway including oxidation of polyunsaturated cardiolipins and accumulation of their hydrolysis products – oxygenated linoleic, arachidonic acids and monolyso-cardiolipins – is activated in vivo after acute tissue injury.


Journal of Biological Chemistry | 2009

Peroxidase Mechanism of Lipid-dependent Cross-linking of Synuclein with Cytochrome c: PROTECTION AGAINST APOPTOSIS VERSUS DELAYED OXIDATIVE STRESS IN PARKINSON DISEASE*

Hülya Bayır; Alexander A. Kapralov; Jianfei Jiang; Zhentai Huang; Yulia Y. Tyurina; Vladimir A. Tyurin; Qing Zhao; Natalia A. Belikova; Vlasova; Akihiro Maeda; Jian Hui Zhu; Hye Mee Na; Pier G. Mastroberardino; Sparvero Lj; Andrew A. Amoscato; Charleen T. Chu; Greenamyre Jt; Valerian E. Kagan

Damage of presynaptic mitochondria could result in release of proapoptotic factors that threaten the integrity of the entire neuron. We discovered that α-synuclein (Syn) forms a triple complex with anionic lipids (such as cardiolipin) and cytochrome c, which exerts a peroxidase activity. The latter catalyzes covalent hetero-oligomerization of Syn with cytochrome c into high molecular weight aggregates. Syn is a preferred substrate of this reaction and is oxidized more readily than cardiolipin, dopamine, and other phenolic substrates. Co-localization of Syn with cytochrome c was detected in aggregates formed upon proapoptotic stimulation of SH-SY5Y and HeLa cells and in dopaminergic substantia nigra neurons of rotenone-treated rats. Syn-cardiolipin exerted protection against cytochrome c-induced caspase-3 activation in a cell-free system, particularly in the presence of H2O2. Direct delivery of Syn into mouse embryonic cells conferred resistance to proapoptotic caspase-3 activation. Conversely, small interfering RNA depletion of Syn in HeLa cells made them more sensitive to dopamine-induced apoptosis. In human Parkinson disease substantia nigra neurons, two-thirds of co-localized Syn-cytochrome c complexes occurred in Lewy neurites. Taken together, these results indicate that Syn may prevent execution of apoptosis in neurons through covalent hetero-oligomerization of cytochrome c. This immediate protective function of Syn is associated with the formation of the peroxidase complex representing a source of oxidative stress and postponed damage.


Molecular Pharmacology | 2006

Mechanisms of cardiolipin oxidation by cytochrome c : Relevance to Pro- and antiapoptotic functions of etoposide

Yulia Y. Tyurina; Vidisha Kini; Vladimir A. Tyurin; Irina I. Vlasova; Jianfei Jiang; Alexander A. Kapralov; Natalia A. Belikova; Jack C. Yalowich; Igor V. Kurnikov; Valerian E. Kagan

Execution of apoptotic program in mitochondria is associated with accumulation of cardiolipin peroxidation products required for the release of proapoptotic factors into the cytosol. This suggests that lipid antioxidants capable of inhibiting cardiolipin peroxidation may act as antiapoptotic agents. Etoposide, a widely used antitumor drug and a topoisomerase II inhibitor, is a prototypical inducer of apoptosis and, at the same time, an effective lipid radical scavenger and lipid antioxidant. Here, we demonstrate that cardiolipin oxidation during apoptosis is realized not via a random cardiolipin peroxidation mechanism but rather proceeds as a result of peroxidase reaction in a tight cytochrome c/cardiolipin complex that restrains interactions of etoposide with radical intermediates generated in the course of the reaction. Using low-temperature and ambient-temperature electron paramagnetic resonance spectroscopy of H2O2-induced protein-derived (tyrosyl) radicals and etoposide phenoxyl radicals, respectively, we established that cardiolipin peroxidation and etoposide oxidation by cytochrome c/cardiolipin complex takes place predominantly on protein-derived radicals of cytochrome c. We further show that etoposide can inhibit cytochrome c-catalyzed oxidation of cardiolipin competing with it as a peroxidase substrate. Peroxidase reaction of cytochrome c/cardiolipin complexes causes cross-linking and oligomerization of cytochrome c. With nonoxidizable tetraoleoyl-cardiolipin, the cross-linking occurs via dityrosine formation, whereas bifunctional lipid oxidation products generated from tetralinoleoyl-cardiolipin participate in the production of high molecular weight protein aggregates. Protein aggregation is effectively inhibited by etoposide. The inhibition of cardiolipin peroxidation by etoposide, however, is realized at far higher concentrations than those at which it induces apoptotic cell death. Thus, oxidation of cardiolipin by the cytochrome c/cardiolipin peroxidase complex, which is essential for apoptosis, is not inhibited by proapoptotic concentrations of the drug.


Cell Death & Differentiation | 2007

Interactions of cardiolipin and lyso-cardiolipins with cytochrome c and tBid: conflict or assistance in apoptosis.

Vladimir A. Tyurin; Yulia Y. Tyurina; A N Osipov; Natalia A. Belikova; Liana V. Basova; Alexander A. Kapralov; Hülya Bayır; Valerian E. Kagan

Interactions of cardiolipin and lyso-cardiolipins with cytochrome c and tBid: conflict or assistance in apoptosis


Journal of Materials Chemistry B | 2013

Effect of antioxidants on enzyme-catalysed biodegradation of carbon nanotubes

Gregg P. Kotchey; James A. Gaugler; Alexander A. Kapralov; Valerian E. Kagan; Alexander Star

The growing applications of carbon nanotubes (CNTs) inevitably increase the risk of exposure to this potentially toxic nanomaterial. In an attempt to address this issue, research has been implemented to study the biodegradation of CNTs. In particular, myeloperoxidase (MPO), an enzyme expressed by inflammatory cells of animals including humans, catalyse the degradation of oxidized carbon nanomaterials. While reactive intermediates generated by MPO efficiently degrade oxidized single-walled carbon nanotubes (o-SWCNTs); the exact mechanism of enzyme-catalysed biodegradation remains ambiguous. In this work, we tried to explain enzymatic oxidation in terms of redox potentials by employing competitive substrates for MPO such as chloride, which is oxidized by MPO to form a strong oxidant (hypochlorite), and antioxidants that have lower redox potentials than CNTs. Employing transmission electron microscopy, Raman spectroscopy, and vis-NIR absorption spectroscopy, we demonstrate that the addition of antioxidants, L-ascorbic acid and L-glutathione, with or without chloride significantly mitigates MPO-catalysed biodegradation of o-SWCNTs. This study focuses on a fundamental understanding of the mechanisms of enzymatic biodegradation of CNTs and the impact of antioxidants on these pathways.


Brain Research | 2006

Oxidation and cytotoxicity of 6-OHDA are mediated by reactive intermediates of COX-2 overexpressed in PC12 cells

Yulia Y. Tyurina; Alexander A. Kapralov; Jianfei Jiang; Grigory G. Borisenko; Alla I. Potapovich; Andrey Sorokin; Patrick M. Kochanek; Steven H. Graham; Nina Felice Schor; Valerian E. Kagan

Parkinsons disease is characterized by a progressive loss of dopaminergic neurons, likely associated with dysregulation of oxidation of catechols, such as dopamine (DA) and 6-hydroxydopamine (6-OHDA), and resulting in oxidative stress. The involvement of cyclooxygenase-2 (COX-2) in pathogenesis of Parkinsons disease has been suggested. However, specific COX-2 triggered mechanisms participating in catalysis of DA oxidation and enhanced catechol-induced cytotoxicity remain poorly characterized. Here, we demonstrate that in a model biochemical system, recombinant heme-reconstituted COX-2 induced oxidation of 6-OHDA in the course of its peroxidase (H(2)O(2)-dependent) and cyclooxygenase (arachidonic acid (AA)-dependent) catalytic half-cycles. Similarly, COX-2 was able to stimulate 6-OHDA oxidation during its peroxidase- and cyclooxygenase half-cycles and caused oxidative stress in homogenates of PC12 cells stably overexpressing the enzyme (but not in mock-transfected cells). In addition, the increased levels of COX-2 were associated with enhanced cytotoxicity of 6-OHDA in stably transfected PC12 cells. Finally, co-oxidation of 6-OHDA by COX-2 triggered production of superoxide radicals critical for both propagation of 6-OHDA oxidation and induction of oxidative stress in COX-2 overexpressing cells. Thus, we conclude that both peroxidase and cyclooxygenase half-cycles of COX-2-catalyzed reactions are essential for COX-2-dependent activation of 6-OHDA oxidation, oxygen radical production, oxidative stress, and cytotoxicity.

Collaboration


Dive into the Alexander A. Kapralov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Star

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianfei Jiang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna A. Shvedova

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Hülya Bayır

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge