Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruben O. Donis is active.

Publication


Featured researches published by Ruben O. Donis.


Science | 2009

Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans

Rebecca Garten; C. Todd Davis; Colin A. Russell; Bo Shu; Stephen Lindstrom; Amanda Balish; Wendy Sessions; Xiyan Xu; Eugene Skepner; Varough Deyde; Margaret Okomo-Adhiambo; Larisa V. Gubareva; John Barnes; Catherine B. Smith; Shannon L. Emery; Michael J. Hillman; Pierre Rivailler; James A. Smagala; Miranda de Graaf; David F. Burke; Ron A. M. Fouchier; Claudia Pappas; Celia Alpuche-Aranda; Hugo López-Gatell; Hiram Olivera; Irma López; Christopher A. Myers; Dennis J. Faix; Patrick J. Blair; Cindy Yu

Generation of Swine Flu As the newly emerged influenza virus starts its journey to infect the worlds human population, the genetic secrets of the 2009 outbreak of swine influenza A(H1N1) are being revealed. In extensive phylogenetic analyses, Garten et al. (p. 197, published online 22 May) confirm that of the eight elements of the virus, the basic components encoded by the hemagglutinin, nucleoprotein, and nonstructural genes originated in birds and transferred to pigs in 1918. Subsequently, these formed a triple reassortant with the RNA polymerase PB1 that transferred from birds in 1968 to humans and then to pigs in 1998, coupled with RNA polymerases PA and PB2 that transferred from birds to pigs in 1998. The neuraminidase and matrix protein genes that complete the virus came from birds and entered pigs in 1979. The analysis offers insights into drug susceptibility and virulence, as well as raising the possibility of hitherto unknown factors determining host specificity. A significant question is, what is the potential for the H1 component of the current seasonal flu vaccine to act as a booster? Apart from the need for ongoing sequencing to monitor for the emergence of new reassortants, future pig populations need to be closely monitored for emerging influenza viruses. Evolutionary analysis suggests a triple reassortant avian-to-pig origin for the 2009 influenza A(H1N1) outbreak. Since its identification in April 2009, an A(H1N1) virus containing a unique combination of gene segments from both North American and Eurasian swine lineages has continued to circulate in humans. The lack of similarity between the 2009 A(H1N1) virus and its nearest relatives indicates that its gene segments have been circulating undetected for an extended period. Its low genetic diversity suggests that the introduction into humans was a single event or multiple events of similar viruses. Molecular markers predictive of adaptation to humans are not currently present in 2009 A(H1N1) viruses, suggesting that previously unrecognized molecular determinants could be responsible for the transmission among humans. Antigenically the viruses are homogeneous and similar to North American swine A(H1N1) viruses but distinct from seasonal human A(H1N1).


Proceedings of the National Academy of Sciences of the United States of America | 2012

A distinct lineage of influenza A virus from bats

Suxiang Tong; Yan Li; Pierre Rivailler; Christina Conrardy; Danilo A. Alvarez Castillo; Li-Mei Chen; Sergio Recuenco; James A. Ellison; Charles T. Davis; Ian A. York; Amy S. Turmelle; David Moran; Shannon Rogers; Mang Shi; Ying Tao; Michael R. Weil; Kevin Tang; Lori A. Rowe; Scott Sammons; Xiyan Xu; Michael Frace; Kim A. Lindblade; Nancy J. Cox; Larry J. Anderson; Charles E. Rupprecht; Ruben O. Donis

Influenza A virus reservoirs in animals have provided novel genetic elements leading to the emergence of global pandemics in humans. Most influenza A viruses circulate in waterfowl, but those that infect mammalian hosts are thought to pose the greatest risk for zoonotic spread to humans and the generation of pandemic or panzootic viruses. We have identified an influenza A virus from little yellow-shouldered bats captured at two locations in Guatemala. It is significantly divergent from known influenza A viruses. The HA of the bat virus was estimated to have diverged at roughly the same time as the known subtypes of HA and was designated as H17. The neuraminidase (NA) gene is highly divergent from all known influenza NAs, and the internal genes from the bat virus diverged from those of known influenza A viruses before the estimated divergence of the known influenza A internal gene lineages. Attempts to propagate this virus in cell cultures and chicken embryos were unsuccessful, suggesting distinct requirements compared with known influenza viruses. Despite its divergence from known influenza A viruses, the bat virus is compatible for genetic exchange with human influenza viruses in human cells, suggesting the potential capability for reassortment and contributions to new pandemic or panzootic influenza A viruses.


PLOS Pathogens | 2013

New World Bats Harbor Diverse Influenza A Viruses

Suxiang Tong; Xueyong Zhu; Yan Li; Mang Shi; Jing Zhang; Melissa Bourgeois; Hua Yang; Xianfeng Chen; Sergio Recuenco; Jorge Gomez; Li-Mei Chen; Adam Johnson; Ying Tao; Cyrille Dreyfus; Wenli Yu; Ryan McBride; Paul J. Carney; Amy T. Gilbert; Jessie Chang; Zhu Guo; Charles T. Davis; James C. Paulson; James Stevens; Charles E. Rupprecht; Edward C. Holmes; Ian A. Wilson; Ruben O. Donis

Aquatic birds harbor diverse influenza A viruses and are a major viral reservoir in nature. The recent discovery of influenza viruses of a new H17N10 subtype in Central American fruit bats suggests that other New World species may similarly carry divergent influenza viruses. Using consensus degenerate RT-PCR, we identified a novel influenza A virus, designated as H18N11, in a flat-faced fruit bat (Artibeus planirostris) from Peru. Serologic studies with the recombinant H18 protein indicated that several Peruvian bat species were infected by this virus. Phylogenetic analyses demonstrate that, in some gene segments, New World bats harbor more influenza virus genetic diversity than all other mammalian and avian species combined, indicative of a long-standing host-virus association. Structural and functional analyses of the hemagglutinin and neuraminidase indicate that sialic acid is not a ligand for virus attachment nor a substrate for release, suggesting a unique mode of influenza A virus attachment and activation of membrane fusion for entry into host cells. Taken together, these findings indicate that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses.


Journal of Virology | 2005

Avian Influenza (H5N1) Viruses Isolated from Humans in Asia in 2004 Exhibit Increased Virulence in Mammals

Taronna R. Maines; Xui Hua Lu; Steven M. Erb; Lindsay Edwards; Jeannette Guarner; Patricia W. Greer; Doan C. Nguyen; Kristy J. Szretter; Li-Mei Chen; Pranee Thawatsupha; Malinee Chittaganpitch; Sunthareeya Waicharoen; Diep T. Nguyen; Tung Nguyen; Hanh Nguyen; Jae-Hong Kim; Long T. Hoang; Chun Kang; Lien S. Phuong; Wilina Lim; Sherif R. Zaki; Ruben O. Donis; Nancy J. Cox; Jacqueline M. Katz; Terrence M. Tumpey

ABSTRACT The spread of highly pathogenic avian influenza H5N1 viruses across Asia in 2003 and 2004 devastated domestic poultry populations and resulted in the largest and most lethal H5N1 virus outbreak in humans to date. To better understand the potential of H5N1 viruses isolated during this epizootic event to cause disease in mammals, we used the mouse and ferret models to evaluate the relative virulence of selected 2003 and 2004 H5N1 viruses representing multiple genetic and geographical groups and compared them to earlier H5N1 strains isolated from humans. Four of five human isolates tested were highly lethal for both mice and ferrets and exhibited a substantially greater level of virulence in ferrets than other H5N1 viruses isolated from humans since 1997. One human isolate and all four avian isolates tested were found to be of low virulence in either animal. The highly virulent viruses replicated to high titers in the mouse and ferret respiratory tracts and spread to multiple organs, including the brain. Rapid disease progression and high lethality rates in ferrets distinguished the highly virulent 2004 H5N1 viruses from the 1997 H5N1 viruses. A pair of viruses isolated from the same patient differed by eight amino acids, including a Lys/Glu disparity at 627 of PB2, previously identified as an H5N1 virulence factor in mice. The virus possessing Glu at 627 of PB2 exhibited only a modest decrease in virulence in mice and was highly virulent in ferrets, indicating that for this virus pair, the K627E PB2 difference did not have a prevailing effect on virulence in mice or ferrets. Our results demonstrate the general equivalence of mouse and ferret models for assessment of the virulence of 2003 and 2004 H5N1 viruses. However, the apparent enhancement of virulence of these viruses in humans in 2004 was better reflected in the ferret.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model.

Taronna R. Maines; Li-Mei Chen; Yumiko Matsuoka; Hualan Chen; Thomas Rowe; Juan Ortín; Ana Falcón; Nguyen Tran Hien; Le Quynh Mai; Endang R. Sedyaningsih; Syahrial Harun; Terrence M. Tumpey; Ruben O. Donis; Nancy J. Cox; Kanta Subbarao; Jacqueline M. Katz

Avian influenza A H5N1 viruses continue to spread globally among birds, resulting in occasional transmission of virus from infected poultry to humans. Probable human-to-human transmission has been documented rarely, but H5N1 viruses have not yet acquired the ability to transmit efficiently among humans, an essential property of a pandemic virus. The pandemics of 1957 and 1968 were caused by avian–human reassortant influenza viruses that had acquired human virus-like receptor binding properties. However, the relative contribution of human internal protein genes or other molecular changes to the efficient transmission of influenza viruses among humans remains poorly understood. Here, we report on a comparative ferret model that parallels the efficient transmission of H3N2 human viruses and the poor transmission of H5N1 avian viruses in humans. In this model, an H3N2 reassortant virus with avian virus internal protein genes exhibited efficient replication but inefficient transmission, whereas H5N1 reassortant viruses with four or six human virus internal protein genes exhibited reduced replication and no transmission. These findings indicate that the human virus H3N2 surface protein genes alone did not confer efficient transmissibility and that acquisition of human virus internal protein genes alone was insufficient for this 1997 H5N1 virus to develop pandemic capabilities, even after serial passages in a mammalian host. These results highlight the complexity of the genetic basis of influenza virus transmissibility and suggest that H5N1 viruses may require further adaptation to acquire this essential pandemic trait.


Journal of Virology | 2006

Protection of Mice and Poultry from Lethal H5N1 Avian Influenza Virus through Adenovirus-Based Immunization

Wentao Gao; Adam C. Soloff; Xiuhua Lu; Angela Montecalvo; Doan C. Nguyen; Yumi Matsuoka; Paul D. Robbins; David E. Swayne; Ruben O. Donis; Jacqueline M. Katz; Simon M. Barratt-Boyes; Andrea Gambotto

ABSTRACT The recent emergence of highly pathogenic avian influenza virus (HPAI) strains in poultry and their subsequent transmission to humans in Southeast Asia have raised concerns about the potential pandemic spread of lethal disease. In this paper we describe the development and testing of an adenovirus-based influenza A virus vaccine directed against the hemagglutinin (HA) protein of the A/Vietnam/1203/2004 (H5N1) (VN/1203/04) strain isolated during the lethal human outbreak in Vietnam from 2003 to 2005. We expressed different portions of HA from a recombinant replication-incompetent adenoviral vector, achieving vaccine production within 36 days of acquiring the virus sequence. BALB/c mice were immunized with a prime-boost vaccine and exposed to a lethal intranasal dose of VN/1203/04 H5N1 virus 70 days later. Vaccination induced both HA-specific antibodies and cellular immunity likely to provide heterotypic immunity. Mice vaccinated with full-length HA were fully protected from challenge with VN/1203/04. We next evaluated the efficacy of adenovirus-based vaccination in domestic chickens, given the critical role of fowl species in the spread of HPAI worldwide. A single subcutaneous immunization completely protected chickens from an intranasal challenge 21 days later with VN/1203/04, which proved lethal to all control-vaccinated chickens within 2 days. These data indicate that the rapid production and subsequent administration of recombinant adenovirus-based vaccines to both birds and high-risk individuals in the face of an outbreak may serve to control the pandemic spread of lethal avian influenza.


PLOS ONE | 2008

Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential.

Hongquan Wan; Erin M. Sorrell; Haichen Song; Jaber Hossain; Gloria Ramirez-Nieto; Isabella Monne; James Stevens; Ilaria Capua; Li-Mei Chen; Ruben O. Donis; Julia Busch; James C. Paulson; Christy Brockwell; Richard J. Webby; Jorge Blanco; Mohammad Q. Al-Natour; Daniel R. Perez

H9N2 avian influenza A viruses are endemic in poultry of many Eurasian countries and have caused repeated human infections in Asia since 1998. To evaluate the potential threat of H9N2 viruses to humans, we investigated the replication and transmission efficiency of H9N2 viruses in the ferret model. Five wild-type (WT) H9N2 viruses, isolated from different avian species from 1988 through 2003, were tested in vivo and found to replicate in ferrets. However these viruses achieved mild peak viral titers in nasal washes when compared to those observed with a human H3N2 virus. Two of these H9N2 viruses transmitted to direct contact ferrets, however no aerosol transmission was detected in the virus displaying the most efficient direct contact transmission. A leucine (Leu) residue at amino acid position 226 in the hemagglutinin (HA) receptor-binding site (RBS), responsible for human virus-like receptor specificity, was found to be important for the transmission of the H9N2 viruses in ferrets. In addition, an H9N2 avian-human reassortant virus, which contains the surface glycoprotein genes from an H9N2 virus and the six internal genes of a human H3N2 virus, showed enhanced replication and efficient transmission to direct contacts. Although no aerosol transmission was observed, the virus replicated in multiple respiratory tissues and induced clinical signs similar to those observed with the parental human H3N2 virus. Our results suggest that the establishment and prevalence of H9N2 viruses in poultry pose a significant threat for humans.


PLOS Pathogens | 2011

IFITM3 Inhibits Influenza A Virus Infection by Preventing Cytosolic Entry

Eric M. Feeley; Jennifer S. Sims; Sinu P. John; Christopher R. Chin; Thomas Pertel; Li-Mei Chen; Gaurav D. Gaiha; Bethany J. Ryan; Ruben O. Donis; Stephen J. Elledge; Abraham L. Brass

To replicate, viruses must gain access to the host cells resources. Interferon (IFN) regulates the actions of a large complement of interferon effector genes (IEGs) that prevent viral replication. The interferon inducible transmembrane protein family members, IFITM1, 2 and 3, are IEGs required for inhibition of influenza A virus, dengue virus, and West Nile virus replication in vitro. Here we report that IFN prevents emergence of viral genomes from the endosomal pathway, and that IFITM3 is both necessary and sufficient for this function. Notably, viral pseudoparticles were inhibited from transferring their contents into the host cell cytosol by IFN, and IFITM3 was required and sufficient for this action. We further demonstrate that IFN expands Rab7 and LAMP1-containing structures, and that IFITM3 overexpression is sufficient for this phenotype. Moreover, IFITM3 partially resides in late endosomal and lysosomal structures, placing it in the path of invading viruses. Collectively our data are consistent with the prediction that viruses that fuse in the late endosomes or lysosomes are vulnerable to IFITM3s actions, while viruses that enter at the cell surface or in the early endosomes may avoid inhibition. Multiple viruses enter host cells through the late endocytic pathway, and many of these invaders are attenuated by IFN. Therefore these findings are likely to have significance for the intrinsic immune systems neutralization of a diverse array of threats.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Contemporary North American influenza H7 viruses possess human receptor specificity: Implications for virus transmissibility

Jessica A. Belser; Ola Blixt; Li-Mei Chen; Claudia Pappas; Taronna R. Maines; Neal Van Hoeven; Ruben O. Donis; Julia Busch; Ryan McBride; James C. Paulson; Jacqueline M. Katz; Terrence M. Tumpey

Avian H7 influenza viruses from both the Eurasian and North American lineage have caused outbreaks in poultry since 2002, with confirmed human infection occurring during outbreaks in The Netherlands, British Columbia, and the United Kingdom. The majority of H7 infections have resulted in self-limiting conjunctivitis, whereas probable human-to-human transmission has been rare. Here, we used glycan microarray technology to determine the receptor-binding preference of Eurasian and North American lineage H7 influenza viruses and their transmissibility in the ferret model. We found that highly pathogenic H7N7 viruses from The Netherlands in 2003 maintained the classic avian-binding preference for α2–3-linked sialic acids (SA) and are not readily transmissible in ferrets, as observed previously for highly pathogenic H5N1 viruses. However, H7N3 viruses isolated from Canada in 2004 and H7N2 viruses from the northeastern United States isolated in 2002–2003 possessed an HA with increased affinity toward α2–6-linked SA, the linkage type found prominently on human tracheal epithelial cells. We identified a low pathogenic H7N2 virus isolated from a man in New York in 2003, A/NY/107/03, which replicated efficiently in the upper respiratory tract of ferrets and was capable of transmission in this species by direct contact. These results indicate that H7 influenza viruses from the North American lineage have acquired sialic acid-binding properties that more closely resemble those of human influenza viruses and have the potential to spread to naïve animals.


Journal of Molecular Biology | 2008

Recent Avian H5N1 Viruses Exhibit Increased Propensity for Acquiring Human Receptor Specificity

James Stevens; Ola Blixt; Li-Mei Chen; Ruben O. Donis; James C. Paulson; Ian A. Wilson

Adaptation of avian influenza viruses for replication and transmission in the human host is believed to require mutations in the hemagglutinin glycoprotein (HA) which enable binding to human alpha2-6 sialosides and concomitant reduction in affinity for avian alpha2-3 linked sialosides. Here, we show by glycan microarray analyses that the two mutations responsible for such specificity changes in 1957 H2N2 and 1968 H3N2 pandemic viruses, when inserted into recombinant HAs or intact viruses of some recent avian H5N1 isolates (clade 2.2), impart such attributes. This propensity to adapt to human receptors is primarily dependent on arginine at position 193 within the receptor-binding site, as well as loss of a vicinal glycosylation site. Widespread occurrence of these susceptible H5N1 clade 2.2 influenza strains has already occurred in Europe, the Middle East, and Africa. Thus, these avian strains should be considered high-risk, because of their significantly lower threshold for acquiring human receptor specificity and, therefore, warrant increased surveillance and further study.

Collaboration


Dive into the Ruben O. Donis's collaboration.

Top Co-Authors

Avatar

Li-Mei Chen

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Nancy J. Cox

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Jacqueline M. Katz

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

C. Todd Davis

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Alexander Klimov

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

James Stevens

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Amanda Balish

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Edward J. Dubovi

Government of the United States of America

View shared research outputs
Top Co-Authors

Avatar

Charles T. Davis

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

James C. Paulson

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge