Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Marson is active.

Publication


Featured researches published by Alexander Marson.


Cell | 2008

Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells

Alexander Marson; Stuart S. Levine; Megan F. Cole; Garrett M. Frampton; Tobias Brambrink; Sarah E. Johnstone; Matthew G. Guenther; Wendy K. Johnston; Marius Wernig; Jamie J. Newman; J. Mauro Calabrese; Lucas M. Dennis; Thomas L. Volkert; Sumeet Gupta; Jennifer Love; Nancy M. Hannett; Phillip A. Sharp; David P. Bartel; Rudolf Jaenisch; Richard A. Young

MicroRNAs (miRNAs) are crucial for normal embryonic stem (ES) cell self-renewal and cellular differentiation, but how miRNA gene expression is controlled by the key transcriptional regulators of ES cells has not been established. We describe here the transcriptional regulatory circuitry of ES cells that incorporates protein-coding and miRNA genes based on high-resolution ChIP-seq data, systematic identification of miRNA promoters, and quantitative sequencing of short transcripts in multiple cell types. We find that the key ES cell transcription factors are associated with promoters for miRNAs that are preferentially expressed in ES cells and with promoters for a set of silent miRNA genes. This silent set of miRNA genes is co-occupied by Polycomb group proteins in ES cells and shows tissue-specific expression in differentiated cells. These data reveal how key ES cell transcription factors promote the ES cell miRNA expression program and integrate miRNAs into the regulatory circuitry controlling ES cell identity.


Nature | 2015

Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants

Kyle Kai-How Farh; Alexander Marson; Jiang Zhu; Markus Kleinewietfeld; William J. Housley; Samantha Beik; Noam Shoresh; Holly Whitton; Russell J.H. Ryan; Alexander A. Shishkin; Meital Hatan; Marlene J. Carrasco-Alfonso; Dita Mayer; C. John Luckey; Nikolaos A. Patsopoulos; Philip L. De Jager; Vijay K. Kuchroo; Charles B. Epstein; Mark J. Daly; David A. Hafler; Bradley E. Bernstein

Genome-wide association studies have identified loci underlying human diseases, but the causal nucleotide changes and mechanisms remain largely unknown. Here we developed a fine-mapping algorithm to identify candidate causal variants for 21 autoimmune diseases from genotyping data. We integrated these predictions with transcription and cis-regulatory element annotations, derived by mapping RNA and chromatin in primary immune cells, including resting and stimulated CD4+ T-cell subsets, regulatory T cells, CD8+ T cells, B cells, and monocytes. We find that ∼90% of causal variants are non-coding, with ∼60% mapping to immune-cell enhancers, many of which gain histone acetylation and transcribe enhancer-associated RNA upon immune stimulation. Causal variants tend to occur near binding sites for master regulators of immune differentiation and stimulus-dependent gene activation, but only 10–20% directly alter recognizable transcription factor binding motifs. Rather, most non-coding risk variants, including those that alter gene expression, affect non-canonical sequence determinants not well-explained by current gene regulatory models.


Nature | 2007

Foxp3 occupancy and regulation of key target genes during T-cell stimulation.

Alexander Marson; Karsten Kretschmer; Garrett M. Frampton; Elizabeth S. Jacobsen; Julia K. Polansky; Kenzie D. MacIsaac; Stuart S. Levine; Ernest Fraenkel; Harald von Boehmer; Richard A. Young

Foxp3+CD4+CD25+ regulatory T (Treg) cells are essential for the prevention of autoimmunity. Treg cells have an attenuated cytokine response to T-cell receptor stimulation, and can suppress the proliferation and effector function of neighbouring T cells. The forkhead transcription factor Foxp3 (forkhead box P3) is selectively expressed in Treg cells, is required for Treg development and function, and is sufficient to induce a Treg phenotype in conventional CD4+CD25- T cells. Mutations in Foxp3 cause severe, multi-organ autoimmunity in both human and mouse. FOXP3 can cooperate in a DNA-binding complex with NFAT (nuclear factor of activated T cells) to regulate the transcription of several known target genes. However, the global set of genes regulated directly by Foxp3 is not known and consequently, how this transcription factor controls the gene expression programme for Treg function is not understood. Here we identify Foxp3 target genes and report that many of these are key modulators of T-cell activation and function. Remarkably, the predominant, although not exclusive, effect of Foxp3 occupancy is to suppress the activation of target genes on T-cell stimulation. Foxp3 suppression of its targets appears to be crucial for the normal function of Treg cells, because overactive variants of some target genes are known to be associated with autoimmune disease.


Cell Stem Cell | 2008

Wnt Signaling Promotes Reprogramming of Somatic Cells to Pluripotency

Alexander Marson; Ruth K. Foreman; Brett Chevalier; Steve Bilodeau; Michael Kahn; Richard A. Young; Rudolf Jaenisch

Document S1. Supplemental Experimental Procedures, Supplemental References, One Table, and Three FiguresxDownload (.35 MB ) Document S1. Supplemental Experimental Procedures, Supplemental References, One Table, and Three Figures


Proceedings of the National Academy of Sciences of the United States of America | 2015

Generation of knock-in primary human T cells using Cas9 ribonucleoproteins

Kathrin Schumann; Steven Lin; Eric Boyer; Dimitre R. Simeonov; Meena Subramaniam; Rachel E. Gate; Genevieve E. Haliburton; Chun Ye; Jeffrey A. Bluestone; Jennifer A. Doudna; Alexander Marson

Significance T-cell genome engineering holds great promise for cancer immunotherapies and cell-based therapies for HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been inefficient. We achieved efficient genome editing by delivering Cas9 protein pre-assembled with guide RNAs. These active Cas9 ribonucleoproteins (RNPs) enabled successful Cas9-mediated homology-directed repair in primary human T cells. Cas9 RNPs provide a programmable tool to replace specific nucleotide sequences in the genome of mature immune cells—a longstanding goal in the field. These studies establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells. T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently “knock out” genes and “knock in” targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4+ T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs). Cas9 RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ∼40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 (PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ∼20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells.


Nature | 2010

Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen

Frédéric Bienvenu; Siwanon Jirawatnotai; Joshua E. Elias; Clifford A. Meyer; Karolina Mizeracka; Alexander Marson; Garrett M. Frampton; Megan F. Cole; Duncan T. Odom; Junko Odajima; Yan Geng; Agnieszka Zagozdzon; Marie Jecrois; Richard A. Young; X. Shirley Liu; Constance L. Cepko; Steven P. Gygi; Piotr Sicinski

Cyclin D1 belongs to the core cell cycle machinery, and it is frequently overexpressed in human cancers. The full repertoire of cyclin D1 functions in normal development and oncogenesis is unclear at present. Here we developed Flag- and haemagglutinin-tagged cyclin D1 knock-in mouse strains that allowed a high-throughput mass spectrometry approach to search for cyclin D1-binding proteins in different mouse organs. In addition to cell cycle partners, we observed several proteins involved in transcription. Genome-wide location analyses (chromatin immunoprecipitation coupled to DNA microarray; ChIP-chip) showed that during mouse development cyclin D1 occupies promoters of abundantly expressed genes. In particular, we found that in developing mouse retinas—an organ that critically requires cyclin D1 function—cyclin D1 binds the upstream regulatory region of the Notch1 gene, where it serves to recruit CREB binding protein (CBP) histone acetyltransferase. Genetic ablation of cyclin D1 resulted in decreased CBP recruitment, decreased histone acetylation of the Notch1 promoter region, and led to decreased levels of the Notch1 transcript and protein in cyclin D1-null (Ccnd1-/-) retinas. Transduction of an activated allele of Notch1 into Ccnd1-/- retinas increased proliferation of retinal progenitor cells, indicating that upregulation of Notch1 signalling alleviates the phenotype of cyclin D1-deficiency. These studies show that in addition to its well-established cell cycle roles, cyclin D1 has an in vivo transcriptional function in mouse development. Our approach, which we term ‘genetic–proteomic’, can be used to study the in vivo function of essentially any protein.


Immunity | 2014

Small molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms

Sheng Xiao; Nir Yosef; Jianfei Yang; Yonghui Wang; Ling Zhou; Chen Zhu; Chuan Wu; Erkan Baloglu; Darby Schmidt; Radha Ramesh; Mercedes Lobera; Mark S. Sundrud; Pei-Yun Tsai; Zhijun Xiang; Jinsong Wang; Yan Xu; Xichen Lin; Karsten Kretschmer; Peter B. Rahl; Richard A. Young; Zhong Zhong; David A. Hafler; Aviv Regev; Shomir Ghosh; Alexander Marson; Vijay K. Kuchroo

We identified three retinoid-related orphan receptor gamma t (RORγt)-specific inhibitors that suppress T helper 17 (Th17) cell responses, including Th17-cell-mediated autoimmune disease. We systemically characterized RORγt binding in the presence and absence of drugs with corresponding whole-genome transcriptome sequencing. RORγt acts as a direct activator of Th17 cell signature genes and a direct repressor of signature genes from other T cell lineages; its strongest transcriptional effects are on cis-regulatory sites containing the RORα binding motif. RORγt is central in a densely interconnected regulatory network that shapes the balance of T cell differentiation. Here, the three inhibitors modulated the RORγt-dependent transcriptional network to varying extents and through distinct mechanisms. Whereas one inhibitor displaced RORγt from its target loci, the other two inhibitors affected transcription predominantly without removing DNA binding. Our work illustrates the power of a system-scale analysis of transcriptional regulation to characterize potential therapeutic compounds that inhibit pathogenic Th17 cells and suppress autoimmunity.


Nature Immunology | 2016

A tissue checkpoint regulates type 2 immunity

Steven J. Van Dyken; Jesse C. Nussbaum; Jinwoo Lee; Ari B. Molofsky; Hong-Erh Liang; Joshua L. Pollack; Rachel E. Gate; Genevieve E. Haliburton; Chun Ye; Alexander Marson; David J. Erle; Richard M. Locksley

Group 2 innate lymphoid cells (ILC2s) and CD4+ type 2 helper T cells (TH2 cells) are defined by their similar effector cytokines, which together mediate the features of allergic immunity. We found that tissue ILC2s and TH2 cells differentiated independently but shared overlapping effector function programs that were mediated by exposure to the tissue-derived cytokines interleukin 25 (IL-25), IL-33 and thymic stromal lymphopoietin (TSLP). Loss of these three tissue signals did not affect lymph node priming, but abrogated the terminal differentiation of effector TH2 cells and adaptive lung inflammation in a T cell–intrinsic manner. Our findings suggest a mechanism by which diverse perturbations can activate type 2 immunity and reveal a shared local-tissue-elicited checkpoint that can be exploited to control both innate and adaptive allergic inflammation.


Nature Genetics | 2017

A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors

Ryan J Park; Tim Wang; Dylan Koundakjian; Judd F. Hultquist; Pedro Lamothe-Molina; Blandine Monel; Kathrin Schumann; Haiyan Yu; Kevin M Krupzcak; Wilfredo F. Garcia-Beltran; Alicja Piechocka-Trocha; Nevan J. Krogan; Alexander Marson; David M. Sabatini; Eric S. Lander; Nir Hacohen; Bruce D. Walker

Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4+ T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention.


Scientific Reports | 2017

CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells.

Levi J. Rupp; Kathrin Schumann; Kole T. Roybal; Rachel E. Gate; Chun Ye; Wendell A. Lim; Alexander Marson

Immunotherapies with chimeric antigen receptor (CAR) T cells and checkpoint inhibitors (including antibodies that antagonize programmed cell death protein 1 [PD-1]) have both opened new avenues for cancer treatment, but the clinical potential of combined disruption of inhibitory checkpoints and CAR T cell therapy remains incompletely explored. Here we show that programmed death ligand 1 (PD-L1) expression on tumor cells can render human CAR T cells (anti-CD19 4-1BBζ) hypo-functional, resulting in impaired tumor clearance in a sub-cutaneous xenograft model. To overcome this suppressed anti-tumor response, we developed a protocol for combined Cas9 ribonucleoprotein (Cas9 RNP)-mediated gene editing and lentiviral transduction to generate PD-1 deficient anti-CD19 CAR T cells. Pdcd1 (PD-1) disruption augmented CAR T cell mediated killing of tumor cells in vitro and enhanced clearance of PD-L1+ tumor xenografts in vivo. This study demonstrates improved therapeutic efficacy of Cas9-edited CAR T cells and highlights the potential of precision genome engineering to enhance next-generation cell therapies.

Collaboration


Dive into the Alexander Marson's collaboration.

Top Co-Authors

Avatar

Richard A. Young

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel E. Gate

University of California

View shared research outputs
Top Co-Authors

Avatar

Rudolf Jaenisch

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Brett Chevalier

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Hiatt

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Ruth K. Foreman

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge