Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathrin Schumann is active.

Publication


Featured researches published by Kathrin Schumann.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Generation of knock-in primary human T cells using Cas9 ribonucleoproteins

Kathrin Schumann; Steven Lin; Eric Boyer; Dimitre R. Simeonov; Meena Subramaniam; Rachel E. Gate; Genevieve E. Haliburton; Chun Ye; Jeffrey A. Bluestone; Jennifer A. Doudna; Alexander Marson

Significance T-cell genome engineering holds great promise for cancer immunotherapies and cell-based therapies for HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been inefficient. We achieved efficient genome editing by delivering Cas9 protein pre-assembled with guide RNAs. These active Cas9 ribonucleoproteins (RNPs) enabled successful Cas9-mediated homology-directed repair in primary human T cells. Cas9 RNPs provide a programmable tool to replace specific nucleotide sequences in the genome of mature immune cells—a longstanding goal in the field. These studies establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells. T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently “knock out” genes and “knock in” targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4+ T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs). Cas9 RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ∼40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 (PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ∼20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells.


Immunity | 2010

Immobilized Chemokine Fields and Soluble Chemokine Gradients Cooperatively Shape Migration Patterns of Dendritic Cells

Kathrin Schumann; Tim Lämmermann; Markus Bruckner; Daniel F. Legler; Julien Polleux; Joachim P. Spatz; Gerold Schuler; Reinhold Förster; Manfred B. Lutz; Lydia Sorokin; Michael Sixt

Chemokines orchestrate immune cell trafficking by eliciting either directed or random migration and by activating integrins in order to induce cell adhesion. Analyzing dendritic cell (DC) migration, we showed that these distinct cellular responses depended on the mode of chemokine presentation within tissues. The surface-immobilized form of the chemokine CCL21, the heparan sulfate-anchoring ligand of the CC-chemokine receptor 7 (CCR7), caused random movement of DCs that was confined to the chemokine-presenting surface because it triggered integrin-mediated adhesion. Upon direct contact with CCL21, DCs truncated the anchoring residues of CCL21, thereby releasing it from the solid phase. Soluble CCL21 functionally resembles the second CCR7 ligand, CCL19, which lacks anchoring residues and forms soluble gradients. Both soluble CCR7 ligands triggered chemotactic movement, but not surface adhesion. Adhesive random migration and directional steering cooperate to produce dynamic but spatially restricted locomotion patterns closely resembling the cellular dynamics observed in secondary lymphoid organs.


Immunity | 2011

Lymph Node T Cell Homeostasis Relies on Steady State Homing of Dendritic Cells

Meike Wendland; Stefanie Willenzon; Jessica R. Kocks; Ana Clara Marques Davalos-Misslitz; Swantje I. Hammerschmidt; Kathrin Schumann; Elisabeth Kremmer; Michael Sixt; Angelika Hoffmeyer; Oliver Pabst; Reinhold Förster

Little is known about mechanisms determining the homeostasis of lymphocytes within lymphoid organs. Applying different mouse models, including conditionally proficient Ccr7 gene-targeted mice, we now show that semimature steady state dendritic cells (sDCs) constitutively trafficking into lymph nodes (LNs) were essential contributors to T cell homeostasis in these organs. sDCs provided vascular endothelial growth factor known to support high endothelial venule formation, thus facilitating enhanced homing of T cells to LNs. The presence of sDCs led to increased CCL21 production in T-zone fibroblastic reticular cells. CCL21 is a ligand for CCR7 known to regulate homing as well as retention of T cells in LNs. In addition, we provide evidence that CCL21 binds to the surface of DCs via its heparin-binding domain, further explaining why T cells leave LNs more rapidly in the absence of sDCs. Together, these data reveal multiple roles for sDCs in regulating T cell homeostasis in LNs.


Nature Genetics | 2017

A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors

Ryan J Park; Tim Wang; Dylan Koundakjian; Judd F. Hultquist; Pedro Lamothe-Molina; Blandine Monel; Kathrin Schumann; Haiyan Yu; Kevin M Krupzcak; Wilfredo F. Garcia-Beltran; Alicja Piechocka-Trocha; Nevan J. Krogan; Alexander Marson; David M. Sabatini; Eric S. Lander; Nir Hacohen; Bruce D. Walker

Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4+ T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention.


Scientific Reports | 2017

CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells.

Levi J. Rupp; Kathrin Schumann; Kole T. Roybal; Rachel E. Gate; Chun Ye; Wendell A. Lim; Alexander Marson

Immunotherapies with chimeric antigen receptor (CAR) T cells and checkpoint inhibitors (including antibodies that antagonize programmed cell death protein 1 [PD-1]) have both opened new avenues for cancer treatment, but the clinical potential of combined disruption of inhibitory checkpoints and CAR T cell therapy remains incompletely explored. Here we show that programmed death ligand 1 (PD-L1) expression on tumor cells can render human CAR T cells (anti-CD19 4-1BBζ) hypo-functional, resulting in impaired tumor clearance in a sub-cutaneous xenograft model. To overcome this suppressed anti-tumor response, we developed a protocol for combined Cas9 ribonucleoprotein (Cas9 RNP)-mediated gene editing and lentiviral transduction to generate PD-1 deficient anti-CD19 CAR T cells. Pdcd1 (PD-1) disruption augmented CAR T cell mediated killing of tumor cells in vitro and enhanced clearance of PD-L1+ tumor xenografts in vivo. This study demonstrates improved therapeutic efficacy of Cas9-edited CAR T cells and highlights the potential of precision genome engineering to enhance next-generation cell therapies.


Journal of Immunology | 2011

In vivo analysis of uropod function during physiological T cell trafficking.

Silvia F. Soriano; Miroslav Hons; Kathrin Schumann; Varsha Kumar; Timo J. Dennier; Ruth Lyck; Michael Sixt; Jens V. Stein

Migrating lymphocytes acquire a polarized phenotype with a leading and a trailing edge, or uropod. Although in vitro experiments in cell lines or activated primary cell cultures have established that Rho-p160 coiled-coil kinase (ROCK)-myosin II-mediated uropod contractility is required for integrin de-adhesion on two-dimensional surfaces and nuclear propulsion through narrow pores in three-dimensional matrices, less is known about the role of these two events during the recirculation of primary, nonactivated lymphocytes. Using pharmacological antagonists of ROCK and myosin II, we report that inhibition of uropod contractility blocked integrin-independent mouse T cell migration through narrow, but not large, pores in vitro. T cell crawling on chemokine-coated endothelial cells under shear was severely impaired by ROCK inhibition, whereas transendothelial migration was only reduced through endothelial cells with high, but not low, barrier properties. Using three-dimensional thick-tissue imaging and dynamic two-photon microscopy of T cell motility in lymphoid tissue, we demonstrated a significant role for uropod contractility in intraluminal crawling and transendothelial migration through lymph node, but not bone marrow, endothelial cells. Finally, we demonstrated that ICAM-1, but not anatomical constraints or integrin-independent interactions, reduced parenchymal motility of inhibitor-treated T cells within the dense lymphoid microenvironment, thus assigning context-dependent roles for uropod contraction during lymphocyte recirculation.


Nature | 2017

Discovery of stimulation-responsive immune enhancers with CRISPR activation

Dimitre R. Simeonov; Benjamin G. Gowen; Mandy Boontanrart; Theodore L. Roth; John D. Gagnon; Maxwell R. Mumbach; Ansuman T. Satpathy; Youjin Lee; Nicolas Bray; Alice Y. Chan; Dmytro S. Lituiev; Michelle L. Nguyen; Rachel E. Gate; Meena Subramaniam; Zhongmei Li; Jonathan M. Woo; Therese Mitros; Graham J. Ray; Gemma L. Curie; Nicki Naddaf; Julia S. Chu; Hong Ma; Eric Boyer; Frédéric Van Gool; Hailiang Huang; Ruize Liu; Victoria R. Tobin; Kathrin Schumann; Mark J. Daly; Kyle Kai-How Farh

The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.


bioRxiv | 2016

Discovery of an autoimmunity-associated IL2RA enhancer by unbiased targeting of transcriptional activation

Dimitre R. Simeonov; Benjamin G. Gowen; Mandy Boontanrart; Theo Roth; Youjin Lee; Alice Y. Chan; Michelle L. Nguyen; Rachel E. Gate; Meena Subramaniam; Jonathan M. Woo; Therese Mitros; Graham J. Ray; Nicolas Bray; Gemma L. Curie; Nicki Naddaf; Eric Boyer; Frédéric Van Gool; Kathrin Schumann; Mark J. Daly; Kyle K Fahr; Chun Ye; Jeffrey A. Bluestone; Mark S. Anderson; Jacob E. Corn; Alexander Marson

The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell type-specific transcriptional programs and responses to specific extracellular cues 1-3. In order to understand the mechanisms by which non-coding genetic variation contributes to disease, systematic mapping of functional enhancers and their biological contexts is required. Here, we develop an unbiased discovery platform that can identify enhancers for a target gene without prior knowledge of their native functional context. We used tiled CRISPR activation (CRISPRa) to synthetically recruit transcription factors to sites across large genomic regions (>100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA (interleukin-2 receptor alpha; CD25). We identified several CRISPRa responsive elements (CaREs) with stimulation-dependent enhancer activity, including an IL2RA enhancer that harbors an autoimmunity risk variant. Using engineered mouse models and genome editing of human primary T cells, we found that sequence perturbation of the disease-associated IL2RA enhancer does not block IL2RA expression, but rather delays the timing of gene activation in response to specific extracellular signals. This work develops an approach to rapidly identify functional enhancers within non-coding regions, decodes a key human autoimmunity association, and suggests a general mechanism by which genetic variation can cause immune dysfunction.


Nature | 2018

Author Correction: Discovery of stimulation-responsive immune enhancers with CRISPR activation

Dimitre R. Simeonov; Benjamin G. Gowen; Mandy Boontanrart; Theodore L. Roth; John D. Gagnon; Maxwell R. Mumbach; Ansuman T. Satpathy; Youjin Lee; Nicolas Bray; Alice Y. Chan; Dmytro S. Lituiev; Michelle L. Nguyen; Rachel E. Gate; Meena Subramaniam; Zhongmei Li; Jonathan M. Woo; Therese Mitros; Graham J. Ray; Gemma L. Curie; Nicki Naddaf; Julia S. Chu; Hong Ma; Eric Boyer; Frédéric Van Gool; Hailiang Huang; Ruize Liu; Victoria R. Tobin; Kathrin Schumann; Mark J. Daly; Kyle Kai-How Farh

In this Letter, analysis of steady-state regulatory T (Treg) cell percentages from Il2ra enhancer deletion (EDEL) and wild-type (WT) mice revealed no differences between them (Extended Data Fig. 9d). This analysis included two mice whose genotypes were incorrectly assigned. Even after correction of the genotypes, no significant differences in Treg cell percentages were seen when data across experimental cohorts were averaged (as was done in Extended Data Fig. 9d). However, if we normalize the corrected data to account for variation among experimental cohorts, a subtle decrease in EDEL Treg cell percentages is revealed and, using the corrected and normalized data, we have redrawn Extended Data Fig. 9d in Supplementary Fig. 1. The Supplementary Information to this Amendment contains the corrected and reanalysed Extended Data Fig. 9d. The sentence “This enhancer deletion (EDEL) strain also had no obvious T cell phenotypes at steady state (Extended Data Fig. 9).” should read: “This enhancer deletion (EDEL) strain had a small decrease in the percentage of Treg cells (Extended Data Fig. 9).”. This error does not affect any of the main figures in the Letter or the data from mice with the human autoimmune-associated single nucleotide polymorphism (SNP) knocked in or with a 12-base-pair deletion at the site (12DEL). In addition, we stated in the Methods that we observed consistent immunophenotypes of EDEL mice across three founders, but in fact, we observed consistent phenotypes in mice from two founders. This does not change any of our conclusions and the original Letter has not been corrected.


bioRxiv | 2017

Correction of autoimmune IL2RA mutations in primary human T cells using non-viral genome targeting

Theodore L. Roth; Ruby Yu; Eric Shifrut; Joseph Hiatt; Han Li; Kathrin Schumann; Victoria Tobin; Andrea M. Ferris; Jeff W. Chen; Jean-Nicolas Schickel; Laurence Pellerin; David Carmody; Gorka Alkorta-Aranburu; Daniela del Gaudio; Min Cho; Hiroyuki Matsumoto; Montse Morell; Ying Mao; David Nguyen; Rolen M. Quadros; Channabasavaiah B. Gurumurthy; Baz Smith; Michael Haugwitz; Stephen H. Hughes; Jonathan S. Weissman; Andrew May; Gary M. Kupfer; Siri Atma W. Greeley; Rosa Bacchetta; Eric Meffre

The full promise of cell-based immunotherapies depends on technology to engineer and correct targeted genome sequences in primary human immune cells. CRISPR-Cas9 genome editing components can be electroporated into primary cells for gene knock-out. To date, co-delivery of oligodeoxynucleotide homology-directed repair (HDR) templates has enabled the replacement of short stretches of nucleotides; however efficient delivery of longer HDR templates has required viral-encoded templates, limiting adaptability and therapeutic applications. Here, we describe methods for non-viral T cell genome targeting with Cas9 RNPs and long (>1 kilobase) non-viral HDR templates. Targeting was efficient across multiple blood donors and genomic loci, cell viability was high, and the procedure could be multiplexed for bi-allelic or multi-gene targeting. Long single-stranded (ss)DNA HDR templates limited observed off-target integrations using either Cas9 or a Cas9 nickase. We were able to identify the causal mutations in IL2RA (interleukin-2 receptor alpha; CD25) in multiple siblings with monogenic autoimmunity and correct the mutations in their affected primary T cells. Non-viral genome targeting will allow rapid and flexible experimental manipulation of primary human immune cells and therapeutic engineering of patient cells.Human T cells are central to physiological immune homeostasis, which protects us from pathogens without collateral autoimmune inflammation. They are also the main effectors in most current cancer immunotherapy strategies1. Several decades of work have aimed to genetically reprogram T cells for therapeutic purposes2–5, but as human T cells are resistant to most standard methods of large DNA insertion these approaches have relied on recombinant viral vectors, which do not target transgenes to specific genomic sites6, 7. In addition, the need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells through homology-directed repair (HDR), but to date in human T cells this still requires viral transduction8, 9. Here, we developed a non-viral, CRISPR-Cas9 genome targeting system that permits the rapid and efficient insertion of individual or multiplexed large (>1 kilobase) DNA sequences at specific sites in the genomes of primary human T cells while preserving cell viability and function. We successfully tested the potential therapeutic use of this approach in two settings. First, we corrected a pathogenic IL2RA mutation in primary T cells from multiple family members with monogenic autoimmune disease and demonstrated enhanced signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR redirecting T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized the tumour antigen, with concomitant cytokine release and tumour cell killing. Taken together, these studies provide preclinical evidence that non-viral genome targeting will enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells.

Collaboration


Dive into the Kathrin Schumann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Sixt

Institute of Science and Technology Austria

View shared research outputs
Top Co-Authors

Avatar

Rachel E. Gate

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Boyer

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice Y. Chan

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge