Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theodore L. Roth is active.

Publication


Featured researches published by Theodore L. Roth.


Nature | 2017

Discovery of stimulation-responsive immune enhancers with CRISPR activation

Dimitre R. Simeonov; Benjamin G. Gowen; Mandy Boontanrart; Theodore L. Roth; John D. Gagnon; Maxwell R. Mumbach; Ansuman T. Satpathy; Youjin Lee; Nicolas Bray; Alice Y. Chan; Dmytro S. Lituiev; Michelle L. Nguyen; Rachel E. Gate; Meena Subramaniam; Zhongmei Li; Jonathan M. Woo; Therese Mitros; Graham J. Ray; Gemma L. Curie; Nicki Naddaf; Julia S. Chu; Hong Ma; Eric Boyer; Frédéric Van Gool; Hailiang Huang; Ruize Liu; Victoria R. Tobin; Kathrin Schumann; Mark J. Daly; Kyle Kai-How Farh

The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.


eLife | 2016

Migratory and adhesive cues controlling innate-like lymphocyte surveillance of the pathogen-exposed surface of the lymph node

Yang Zhang; Theodore L. Roth; Elizabeth E. Gray; Hsin Chen; Lauren B. Rodda; Yin Liang; Patrick Ventura; Saul A. Villeda; Paul R. Crocker; Jason G. Cyster

Lymph nodes (LNs) contain innate-like lymphocytes that survey the subcapsular sinus (SCS) and associated macrophages for pathogen entry. The factors promoting this surveillance behavior have not been defined. Here, we report that IL7RhiCcr6+ lymphocytes in mouse LNs rapidly produce IL17 upon bacterial and fungal challenge. We show that these innate-like lymphocytes are mostly LN resident. Ccr6 is required for their accumulation near the SCS and for efficient IL17 induction. Migration into the SCS intrinsically requires S1pr1, whereas movement from the sinus into the parenchyma involves the integrin LFA1 and its ligand ICAM1. CD169, a sialic acid-binding lectin, helps retain the cells within the sinus, preventing their loss in lymph flow. These findings establish a role for Ccr6 in augmenting innate-like lymphocyte responses to lymph-borne pathogens, and they define requirements for cell movement between parenchyma and SCS in what we speculate is a program of immune surveillance that helps achieve LN barrier immunity. DOI: http://dx.doi.org/10.7554/eLife.18156.001


Communications Biology | 2018

Light-activated cell identification and sorting (LACIS) for selection of edited clones on a nanofluidic device

Annamaria Mocciaro; Theodore L. Roth; Hayley M. Bennett; Magali Soumillon; Abhik Shah; Joseph Hiatt; Kevin T. Chapman; Alexander Marson; Gregory Lavieu

Despite improvements in the CRISPR molecular toolbox, identifying and purifying properly edited clones remains slow, laborious, and low-yield. Here, we establish a method to enable clonal isolation, selection, and expansion of properly edited cells, using OptoElectroPositioning technology for single-cell manipulation on a nanofluidic device. Briefly, after electroporation of primary T cells with CXCR4-targeting Cas9 ribonucleoproteins, single T cells are isolated on a chip and expanded into colonies. Phenotypic consequences of editing are rapidly assessed on-chip with cell-surface staining for CXCR4. Furthermore, individual colonies are identified based on their specific genotype. Each colony is split and sequentially exported for on-target sequencing and further off-chip clonal expansion of the validated clones. Using this method, single-clone editing efficiencies, including the rate of mono- and bi-allelic indels or precise nucleotide replacements, can be assessed within 10 days from Cas9 ribonucleoprotein introduction in cells.Annamaria Mocciaro et al. present LACIS, a method for identifying and selecting gene-edited clones using a microfluidic device. The authors apply LACIS to primary T cells after CRISPR-Cas9 editing of CXCR4 and show that selection of edited clones was possible within 10 days from initiation of gene editing.


bioRxiv | 2018

Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function

Eric Shifrut; Julia Carnevale; Victoria Tobin; Theodore L. Roth; Jonathan M. Woo; Christina Bui; P. Jonathan Li; Morgan E. Diolaiti; Alan Ashworth; Alexander Marson

Human T cells are central effectors of immunity and cancer immunotherapy. CRISPR-based functional studies in T cells could prioritize novel targets for drug development and improve the design of genetically reprogrammed cell-based therapies. However, large-scale CRISPR screens have been challenging in primary human cells. We developed a new method, sgRNA lentiviral infection with Cas9 protein electroporation (SLICE), to identify regulators of stimulation responses in primary human T cells. Genome-wide loss-of-function screens identified essential T cell receptor signaling components and genes that negatively tune proliferation following stimulation. Targeted ablation of individual candidate genes validated hits and identified perturbations that enhanced cancer cell killing. SLICE coupled with single-cell RNA-Seq revealed signature stimulation-response gene programs altered by key genetic perturbations. SLICE genome-wide screening was also adaptable to identify mediators of immunosuppression, revealing genes controlling response to adenosine signaling. The SLICE platform enables unbiased discovery and characterization of functional gene targets in primary cells.


Nature | 2018

Author Correction: Discovery of stimulation-responsive immune enhancers with CRISPR activation

Dimitre R. Simeonov; Benjamin G. Gowen; Mandy Boontanrart; Theodore L. Roth; John D. Gagnon; Maxwell R. Mumbach; Ansuman T. Satpathy; Youjin Lee; Nicolas Bray; Alice Y. Chan; Dmytro S. Lituiev; Michelle L. Nguyen; Rachel E. Gate; Meena Subramaniam; Zhongmei Li; Jonathan M. Woo; Therese Mitros; Graham J. Ray; Gemma L. Curie; Nicki Naddaf; Julia S. Chu; Hong Ma; Eric Boyer; Frédéric Van Gool; Hailiang Huang; Ruize Liu; Victoria R. Tobin; Kathrin Schumann; Mark J. Daly; Kyle Kai-How Farh

In this Letter, analysis of steady-state regulatory T (Treg) cell percentages from Il2ra enhancer deletion (EDEL) and wild-type (WT) mice revealed no differences between them (Extended Data Fig. 9d). This analysis included two mice whose genotypes were incorrectly assigned. Even after correction of the genotypes, no significant differences in Treg cell percentages were seen when data across experimental cohorts were averaged (as was done in Extended Data Fig. 9d). However, if we normalize the corrected data to account for variation among experimental cohorts, a subtle decrease in EDEL Treg cell percentages is revealed and, using the corrected and normalized data, we have redrawn Extended Data Fig. 9d in Supplementary Fig. 1. The Supplementary Information to this Amendment contains the corrected and reanalysed Extended Data Fig. 9d. The sentence “This enhancer deletion (EDEL) strain also had no obvious T cell phenotypes at steady state (Extended Data Fig. 9).” should read: “This enhancer deletion (EDEL) strain had a small decrease in the percentage of Treg cells (Extended Data Fig. 9).”. This error does not affect any of the main figures in the Letter or the data from mice with the human autoimmune-associated single nucleotide polymorphism (SNP) knocked in or with a 12-base-pair deletion at the site (12DEL). In addition, we stated in the Methods that we observed consistent immunophenotypes of EDEL mice across three founders, but in fact, we observed consistent phenotypes in mice from two founders. This does not change any of our conclusions and the original Letter has not been corrected.


Journal of Visualized Experiments | 2018

Enhanced Genome Editing with Cas9 Ribonucleoprotein in Diverse Cells and Organisms

Behnom Farboud; Erin Jarvis; Theodore L. Roth; Jiyung Shin; Jacob E. Corn; Alexander Marson; Barbara J Meyer; Nipam H. Patel; Megan L. Hochstrasser

Site-specific eukaryotic genome editing with CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems has quickly become a commonplace amongst researchers pursuing a wide variety of biological questions. Users most often employ the Cas9 protein derived from Streptococcus pyogenes in a complex with an easily reprogrammed guide RNA (gRNA). These components are introduced into cells, and through a base pairing with a complementary region of the double-stranded DNA (dsDNA) genome, the enzyme cleaves both strands to generate a double-strand break (DSB). Subsequent repair leads to either random insertion or deletion events (indels) or the incorporation of experimenter-provided DNA at the site of the break. The use of a purified single-guide RNA and Cas9 protein, preassembled to form an RNP and delivered directly to cells, is a potent approach for achieving highly efficient gene editing. RNP editing particularly enhances the rate of gene insertion, an outcome that is often challenging to achieve. Compared to the delivery via a plasmid, the shorter persistence of the Cas9 RNP within the cell leads to fewer off-target events. Despite its advantages, many casual users of CRISPR gene editing are less familiar with this technique. To lower the barrier to entry, we outline detailed protocols for implementing the RNP strategy in a range of contexts, highlighting its distinct benefits and diverse applications. We cover editing in two types of primary human cells, T cells and hematopoietic stem/progenitor cells (HSPCs). We also show how Cas9 RNP editing enables the facile genetic manipulation of entire organisms, including the classic model roundworm Caenorhabditis elegans and the more recently introduced model crustacean, Parhyale hawaiensis.


Journal of Immunological Methods | 2018

Genetic engineering in primary human B cells with CRISPR-Cas9 ribonucleoproteins

Chung-An M. Wu; Theodore L. Roth; Yuriy Baglaenko; Dario M. Ferri; Patrick M. Brauer; Juan Carlos Zúñiga-Pflücker; Kristina W. Rosbe; Joan E. Wither; Alexander Marson; Christopher D.C. Allen

Genome editing in human cells with targeted nucleases now enables diverse experimental and therapeutic genome engineering applications, but extension to primary human B cells remains limited. Here we report a method for targeted genetic engineering in primary human B cells, utilizing electroporation of CRISPR-Cas9 ribonucleoproteins (RNPs) to introduce gene knockout mutations at protein-coding loci with high efficiencies that in some cases exceeded 80%. Further, we demonstrate knock-in editing of targeted nucleotides with efficiency exceeding 10% through co-delivery of oligonucleotide templates for homology directed repair. We delivered Cas9 RNPs in two distinct in vitro culture systems to achieve editing in both undifferentiated B cells and activated B cells undergoing differentiation, reflecting utility in diverse experimental conditions. In summary, we demonstrate a powerful and scalable research tool for functional genetic studies of human B cell biology that may have further applications in engineered B cell therapeutics.


bioRxiv | 2017

Correction of autoimmune IL2RA mutations in primary human T cells using non-viral genome targeting

Theodore L. Roth; Ruby Yu; Eric Shifrut; Joseph Hiatt; Han Li; Kathrin Schumann; Victoria Tobin; Andrea M. Ferris; Jeff W. Chen; Jean-Nicolas Schickel; Laurence Pellerin; David Carmody; Gorka Alkorta-Aranburu; Daniela del Gaudio; Min Cho; Hiroyuki Matsumoto; Montse Morell; Ying Mao; David Nguyen; Rolen M. Quadros; Channabasavaiah B. Gurumurthy; Baz Smith; Michael Haugwitz; Stephen H. Hughes; Jonathan S. Weissman; Andrew May; Gary M. Kupfer; Siri Atma W. Greeley; Rosa Bacchetta; Eric Meffre

The full promise of cell-based immunotherapies depends on technology to engineer and correct targeted genome sequences in primary human immune cells. CRISPR-Cas9 genome editing components can be electroporated into primary cells for gene knock-out. To date, co-delivery of oligodeoxynucleotide homology-directed repair (HDR) templates has enabled the replacement of short stretches of nucleotides; however efficient delivery of longer HDR templates has required viral-encoded templates, limiting adaptability and therapeutic applications. Here, we describe methods for non-viral T cell genome targeting with Cas9 RNPs and long (>1 kilobase) non-viral HDR templates. Targeting was efficient across multiple blood donors and genomic loci, cell viability was high, and the procedure could be multiplexed for bi-allelic or multi-gene targeting. Long single-stranded (ss)DNA HDR templates limited observed off-target integrations using either Cas9 or a Cas9 nickase. We were able to identify the causal mutations in IL2RA (interleukin-2 receptor alpha; CD25) in multiple siblings with monogenic autoimmunity and correct the mutations in their affected primary T cells. Non-viral genome targeting will allow rapid and flexible experimental manipulation of primary human immune cells and therapeutic engineering of patient cells.Human T cells are central to physiological immune homeostasis, which protects us from pathogens without collateral autoimmune inflammation. They are also the main effectors in most current cancer immunotherapy strategies1. Several decades of work have aimed to genetically reprogram T cells for therapeutic purposes2–5, but as human T cells are resistant to most standard methods of large DNA insertion these approaches have relied on recombinant viral vectors, which do not target transgenes to specific genomic sites6, 7. In addition, the need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells through homology-directed repair (HDR), but to date in human T cells this still requires viral transduction8, 9. Here, we developed a non-viral, CRISPR-Cas9 genome targeting system that permits the rapid and efficient insertion of individual or multiplexed large (>1 kilobase) DNA sequences at specific sites in the genomes of primary human T cells while preserving cell viability and function. We successfully tested the potential therapeutic use of this approach in two settings. First, we corrected a pathogenic IL2RA mutation in primary T cells from multiple family members with monogenic autoimmune disease and demonstrated enhanced signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR redirecting T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized the tumour antigen, with concomitant cytokine release and tumour cell killing. Taken together, these studies provide preclinical evidence that non-viral genome targeting will enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells.


bioRxiv | 2017

A CRISPR-Cas9 Genome Engineering Platform in Primary CD4+ T Cells for the Interrogation of HIV Host Factors

Judd F. Hultquist; Joseph Hiatt; Kathrin Schumann; Michael J. McGregor; Theodore L. Roth; Paige Haas; Jennifer A. Doudna; Alexander Marson; Nevan J. Krogan

CRISPR-Cas9 gene editing strategies have revolutionized our ability to engineer the human genome for robust functional interrogation of complex biological processes. We have recently adapted this technology to primary human T cells to generate a high-throughput platform for analyzing the role of host factors in pathogen infection and lifecycle. Here, we describe applications of this system to investigate HIV pathogenesis in CD4+ T cells. Briefly, CRISPR-Cas9 ribonucleoproteins (crRNPs) are synthesized in vitro and delivered to activated primary human CD4+ T cells by nucleofection. These edited cells are then validated and expanded for use in downstream cellular, genetic, or protein-based assays. Our platform supports the arrayed generation of several gene manipulations in only a few hours’ time and is widely adaptable across culture conditions, infection protocols, and downstream applications. We present detailed protocols for crRNP synthesis, primary T cell culture, 96-well nucleofection, molecular validation, and HIV infection with additional considerations for guide and screen design as well as crRNP multiplexing.


bioRxiv | 2017

Light-Activated Cell Identification and Sorting (LACIS): A New Method to Identify and Select Edited Clones on a Microfluidic Device

Annamaria Mocciaro; Theodore L. Roth; Hayley M. Bennett; Magali Soumillon; Abhik Shah; Joseph Hiatt; Kevin T. Chapman; Alexander Marson; Gregory Lavieu

CRISPR-Cas9 gene editing has revolutionized cell engineering and promises to open new doors in gene and cell therapies. Despite improvements in the CRISPR-editing molecular toolbox in cell lines and primary cells, identifying and purifying properly edited clones remains slow, laborious and low-yield. Here, we establish a new method that uses cell manipulation on a chip with Opto-Electronic Positioning (OEP) technology to enable clonal isolation and selection of edited cells. We focused on editing CXCR4 in primary human T cells, a gene that encodes a co-receptor for HIV entry. T cells hold significant potential for cell-based therapy, but the gene-editing efficiency and expansion potential of these cells is limited. We describe here a method to obviate these limitations. Briefly, after electroporation of cells with CXCR4-targeting Cas9 ribonucleoproteins (RNPs), single T cells were isolated on a chip, where they proliferated over time into well-resolved colonies. Phenotypic consequences of genome editing could be rapidly assessed on-chip with cell-surface staining for CXCR4. Furthermore, independent of phenotype, individual colonies could be identified based on their specific genotype at the 5-10 cell stage. Each colony was split and sequentially exported for immediate on-target sequencing and validation, and further off-chip clonal expansion of the validated clones. We were able to assess single-clone editing efficiencies, including the rate of monoallelic and biallelic indels or precise nucleotide replacements. This new method will enable identification and selection of perfectly edited clones within 10 days from Cas9-RNP introduction in cells based on the phenotype and/or genotype.

Collaboration


Dive into the Theodore L. Roth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Hiatt

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory Lavieu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abhik Shah

University of California

View shared research outputs
Top Co-Authors

Avatar

Alice Y. Chan

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge