Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Pietras is active.

Publication


Featured researches published by Alexander Pietras.


Cell Cycle | 2007

Hypoxia inducible factor-2alpha in cancer.

Tobias Löfstedt; Erik Fredlund; Linda Holmquist-Mengelbier; Alexander Pietras; Marie Ovenberger; Lorenz Poellinger; Sven Påhlman

Poorly oxygenated (hypoxic) tumors are frequently more aggressive compared to corresponding tumors that are better oxygenated. Adaptation to hypoxia is primarily mediated by two closely related hypoxia inducible transcription factor complexes, HIF-1 and HIF-2, which become stabilized and activated at low oxygen levels. Whether HIF-1 and HIF-2 have different roles in tumorigenesis is an open question and an issue we discuss. With focus on HIF-2, we summarize reported phenotypical changes of HIF genetic models and HIF expression patterns during normal development, in adult non-malignant tissues and in tumors. We further address the much-discussed subject of target gene preferences between HIF-1 and HIF-2, given that both transcription factors bind to the same DNA motif. Finally, we also discuss the observations that the oxygen-sensitive HIF-2α subunit is accumulated and active under non-hypoxic conditions as exemplified by HIF-2α expressing tumor macrophages and neuroblastoma cells located in seemingly well-vascularized tumor regions and how this phenomenon is related to tumor aggressiveness.


Journal of Clinical Investigation | 2008

Suppression of renal cell carcinoma growth by inhibition of Notch signaling in vitro and in vivo

Jonas Sjölund; Martin Johansson; Sugata Manna; Carl Norin; Alexander Pietras; Siv Beckman; Elise Nilsson; Börje Ljungberg; Håkan Axelson

Loss of the tumor suppressor gene von Hippel-Lindau (VHL) plays a key role in the oncogenesis of clear cell renal cell carcinoma (CCRCC). The loss leads to stabilization of the HIF transcription complex, which induces angiogenic and mitogenic pathways essential for tumor formation. Nonetheless, additional oncogenic events have been postulated to be required for the formation of CCRCC tumors. Here, we show that the Notch signaling cascade is constitutively active in human CCRCC cell lines independently of the VHL/HIF pathway. Blocking Notch signaling resulted in attenuation of proliferation and restrained anchorage-independent growth of CCRCC cell lines. Using siRNA targeting the different Notch receptors established that the growth-promoting effects of the Notch signaling pathway were attributable to Notch-1 and that Notch-1 knockdown was accompanied by elevated levels of the negative cell-cycle regulators p21 Cip1 and/or p27 Kip1. Treatment of nude mice with an inhibitor of Notch signaling potently inhibited growth of xenotransplanted CCRCC cells. Moreover, Notch-1 and the Notch ligand Jagged-1 were expressed at significantly higher levels in CCRCC tumors than in normal human renal tissue, and the growth of primary CCRCC cells was attenuated upon inhibition of Notch signaling. These findings indicate that the Notch cascade may represent a novel and therapeutically accessible pathway in CCRCC.


Proceedings of the National Academy of Sciences of the United States of America | 2009

HIF-2 alpha maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells

Alexander Pietras; Loen M. Hansford; A. Sofie Sofie Johnsson; Esther Bridges; Jonas Sjölund; David Gisselsson; Matilda Rehn; Siv Beckman; Rosa Noguera; Samuel Navarro; Jörg Cammenga; Erik Fredlund; David R. Kaplan; Sven Påhlman

High hypoxia-inducible factor-2α (HIF-2α) protein levels predict poor outcome in neuroblastoma, and hypoxia dedifferentiates cultured neuroblastoma cells toward a neural crest-like phenotype. Here, we identify HIF-2α as a marker of normoxic neural crest-like neuroblastoma tumor-initiating/stem cells (TICs) isolated from patient bone marrows. Knockdown of HIF-2α reduced VEGF expression and induced partial sympathetic neuronal differentiation when these TICs were grown in vitro under stem cell-promoting conditions. Xenograft tumors of HIF-2α-silenced cells were widely necrotic, poorly vascularized, and resembled the bulk of tumor cells in clinical neuroblastomas by expressing additional sympathetic neuronal markers, whereas control tumors were immature, well-vascularized, and stroma-rich. Thus, HIF-2α maintains an undifferentiated state of neuroblastoma TICs. Because low differentiation is associated with poor outcome and angiogenesis is crucial for tumor growth, HIF-2α is an attractive target for neuroblastoma therapy.


Clinical Cancer Research | 2009

HIF-1{alpha} and HIF-2{alpha} Are Differentially Regulated In vivo in Neuroblastoma: High HIF-1{alpha} Correlates Negatively to Advanced Clinical Stage and Tumor Vascularization.

Rosa Noguera; Erik Fredlund; Marta Piqueras; Alexander Pietras; Siv Beckman; Samuel Navarro; Sven Påhlman

Purpose: Hypoxia is considered to be a major driving force behind tumor angiogenesis. The stabilization and activation at hypoxia of the hypoxia-inducible factors HIF-1α and HIF-2α and the concomitant induction of expression of vascular endothelial growth factor (VEGF) and other proangiogenic factors provide a molecular frame for hypoxia-driven tumor angiogenesis. This study has investigated how HIF and VEGF protein levels relate to each other with regard to vascularization, tumor stage, and overall survival in neuroblastoma. Experimental Design: Tissue cores taken from tumor specimens representing 93 children with neuroblastoma were arranged on a microarray and stained for HIF-1α, HIF-2α, VEGF, and CD31 proteins. Both fraction of positive cells and staining intensity were evaluated and protein levels were correlated with each other and with clinical variables. Results: Although high levels of both HIF-1α (P < 0.001) and HIF-2α (P < 0.001) correlated positively to VEGF expression, they did not fully correlate with each other. Moreover, HIF-1α (P = 0.002) and VEGF (P < 0.001), but not HIF-2α, correlated negatively to vascularization as determined by CD31 staining abundance. VEGF expression or degree of vascularization did not correlate with tumor stage or overall survival. High HIF-1α levels correlated with low tumor stage (P < 0.001) and were associated with a favorable patient prognosis (P = 0.08). Conclusions: The discordant results on expression of HIF-1α and HIF-2α suggest that these two proteins are differentially regulated in vivo, thus reflecting distinctive protein expression/stabilization mechanisms. The association between HIF-1α and favorable outcome stresses the importance of discriminating HIF-2α from HIF-1α expression and has implications for using HIFs as treatment targets. (Clin Cancer Res 2009;15(23):7130–6)


Advances in Cancer Research | 2011

Cancer stem cells in tumor heterogeneity.

Alexander Pietras

Cancer cells within a given tumor were long regarded as a largely homogeneous group of cells originating from a common progenitor cell. However, it is increasingly appreciated that there is a considerable heterogeneity within tumors also on the tumor cell level. This heterogeneity extends to virtually all measurable properties of cancer cells, ranging from differentiation state, proliferation rate, migratory and invasive capacity to size, and therapeutic response. Such heterogeneity likely represents a major therapeutic hurdle, but the mechanisms underlying its emergence remain poorly understood and a controversial topic. The cancer stem cell model of tumor progression has gained increasing support during the past several years. In this review, I will discuss some major implications of the cancer stem cell hypothesis on the origins of tumor heterogeneity, focusing both on heterogeneity within the tumor cells proper and on potential transdifferentiation of cancer stem cells into stromal and endothelial lineages, as well as on heterogeneity of the therapeutic response. Evidence for and against a direct and causal role of cancer stem cells in the emergence of tumor heterogeneity will be weighed and alternative explanations for apparently contradictory observations discussed. Finally, I will discuss the potential origins of cancer stem cells and the various implications of origin to the contribution to tumor heterogeneity, and outline some future directions.


Molecular Cancer Research | 2011

JAG2 Induction in Hypoxic Tumor Cells Alters Notch Signaling and Enhances Endothelial Cell Tube Formation

Alexander Pietras; Kristoffer von Stedingk; David Lindgren; Sven Påhlman; Håkan Axelson

Several studies have revealed links between hypoxia and activation of Notch in solid tumors. While most reports have focused on intracellular domain of the Notch1 receptor (icN1) stabilization by direct interaction with HIF proteins, little attention has been given to Notch ligand regulation during hypoxia. Here we show that the Notch ligand JAG2 is transcriptionally activated by hypoxia in a HIF-1α dependent manner. Hypoxic JAG2 induction resulted in elevated Notch activity in tumor cells, as was measured by increased icN1 levels and induction of the Notch target gene HEY1. In primary tumor material, JAG2 expression correlated with vascular development and angiogenesis gene signatures. In line with this, coculture experiments of endothelial cells with hypoxic breast cancer cells displayed a reduction in number of capillary-like tubes formed upon JAG2 siRNA treatment of the breast cancer cells. Together these results suggest that a hypoxic induction of JAG2 in tumor cells mediates a hypoxia-regulated cross-talk between tumor and endothelial cells. Mol Cancer Res; 9(5); 626–36. ©2011 AACR.


Current Topics in Microbiology and Immunology | 2010

The HIF-2alpha-Driven Pseudo-Hypoxic Phenotype in Tumor Aggressiveness, Differentiation, and Vascularization.

Alexander Pietras; Sofie Mohlin; Sven Påhlman

Cellular adaptation to diminished tissue oxygen tensions, hypoxia, is largely governed by the hypoxia inducible transcription factors, HIF-1 and HIF-2. Tumor hypoxia and high HIF protein levels are frequently associated with aggressive disease. In recent years, high tumor cell levels of HIF-2 and the oxygen sensitive subunit HIF-2α have been associated with unfavorable disease and shown to be highly expressed in tumor stem/initiating cells originating from neuroblastoma and glioma, respectively. In these cells, HIF-2 is active under nonhypoxic conditions as well, creating a pseudo-hypoxic phenotype with clear influence on tumor behavior. Neuroblastoma tumor initiating cells are immature with a neural crest-like phenotype and downregulation of HIF-2α in these cells results in neuronal sympathetic differentiation and the cells become phenotypically similar to the bulk of neuroblastoma cells found in clinical specimens. Knockdown of HIF-2α in neuroblastoma and glioma tumor stem/initiating cells leads to reduced levels of VEGF and poorly vascularized, highly necrotic tumors. As high HIF-2α expression further correlates with disseminated disease as demonstrated in neuroblastoma, glioma, and breast carcinoma, we propose that targeting HIF-2α and/or the pseudo-hypoxic phenotype induced by HIF-2 under normoxic conditions has great clinical potential.


Molecular Cancer Therapeutics | 2009

Arsenic trioxide is highly cytotoxic to small cell lung carcinoma cells

Helen M. Pettersson; Alexander Pietras; Matilda Munksgaard Persson; Jenny Karlsson; Leif Johansson; Maria C. Shoshan; Sven Påhlman

Small cell lung carcinoma (SCLC) is an extremely aggressive form of cancer and current treatment protocols are insufficient. SCLC have neuroendocrine characteristics and show phenotypical similarities to the childhood tumor neuroblastoma. As multidrug-resistant neuroblastoma cells are highly sensitive to arsenic trioxide (As2O3) in vitro and in vivo, we here studied the cytotoxic effects of As2O3 on SCLC cells. As2O3 induced pronounced cell death in SCLC cells at clinically relevant concentrations, and also at hypoxia. SCLC cells were more sensitive than non–SCLC cells to As2O3. Cell death was mainly due to necrosis, although apoptotic responses were also seen. A significant in vivo effect of As2O3 on SCLC growth was shown in a nude mice-xenograft model, although a fraction of the treated tumor-bearing animals did not respond. The nonresponding SCLC tumors differed in morphology and cell organization compared with treatment-responsive tumors, which in turn, showed decreased vascularization and higher expression of neuroendocrine markers compared with control tumors. Our results suggest a potential clinical application of As2O3 in SCLC therapy. In addition to cell death induction, antiangiogenic induction of differentiation may also be part of the in vivo effect of As2O3 on SCLC growth, as suggested by an increase in neuroendocrine markers in cultured cells. [Mol Cancer Ther 2009;8(1):160–70]


Scientific Reports | 2016

ABCG2 regulates self-renewal and stem cell marker expression but not tumorigenicity or radiation resistance of glioma cells

Boyoung Wee; Alexander Pietras; Tatsuya Ozawa; Elena Bazzoli; Ondrej Podlaha; Christophe Antczak; Bengt Westermark; Sven Nelander; Lene Uhrbom; Karin Forsberg-Nilsson; Hakim Djaballah; Franziska Michor; Eric C. Holland

Glioma cells with stem cell traits are thought to be responsible for tumor maintenance and therapeutic failure. Such cells can be enriched based on their inherent drug efflux capability mediated by the ABC transporter ABCG2 using the side population assay, and their characteristics include increased self-renewal, high stem cell marker expression and high tumorigenic capacity in vivo. Here, we show that ABCG2 can actively drive expression of stem cell markers and self-renewal in glioma cells. Stem cell markers and self-renewal was enriched in cells with high ABCG2 activity, and could be specifically inhibited by pharmacological and genetic ABCG2 inhibition. Importantly, despite regulating these key characteristics of stem-like tumor cells, ABCG2 activity did not affect radiation resistance or tumorigenicity in vivo. ABCG2 effects were Notch-independent and mediated by diverse mechanisms including the transcription factor Mef. Our data demonstrate that characteristics of tumor stem cells are separable, and highlight ABCG2 as a potential driver of glioma stemness.


Oncogene | 2007

Arsenic trioxide-induced neuroblastoma cell death is accompanied by proteolytic activation of nuclear Bax.

Jenny Karlsson; Alexander Pietras; Siv Beckman; Helen M. Pettersson; Christer Larsson; Sven Påhlman

Arsenic trioxide (As2O3) is toxic to multidrug-resistant neuroblastoma cells in vivo and in vitro. In neuroblastoma, As2O3 does not exert its cell death-promoting effects via a classical apoptotic pathway. A death mechanism involving proteolytic cleavage of Bax to a p18 form seems to be of importance, because inhibition of Bax cleavage coincides with diminished cell death. As existing models of cell death implicate Bax in the intrinsic apoptotic pathway, triggering death after Bax translocation to the mitochondria, we investigated the cellular localization of p18 Bax by subcellular fractionation. After As2O3 treatment, p18 Bax was only present in nuclei-enriched, mitochondria-depleted fractions. Cytoplasmic p21 Bax levels decreased, whereas total (p21 and p18) nuclear Bax increased. Overexpressed p21 Bax localized to the cytoplasm and nuclei, whereas overexpressed p18 Bax localized to extra-nuclear structures only. The inability of overexpressed p18 Bax to locate to the nucleus, and the As2O3-induced reduction of p21 Bax in the cytosol, suggest an As2O3-induced mechanism where p18 Bax gets cleaved and ‘trapped’ in the nucleus. This model is strengthened by the observation that calpain, the protease responsible for p18 Bax generation, is present in the nuclei, and that nuclear calpain is induced by increasing As2O3 and Ca2+ levels.

Collaboration


Dive into the Alexander Pietras's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge