Alexander R. Stine
San Francisco State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander R. Stine.
Nature | 2009
Alexander R. Stine; Peter John Huybers; Inez Y. Fung
The annual cycle in the Earth’s surface temperature is extremely large—comparable in magnitude to the glacial–interglacial cycles over most of the planet. Trends in the phase and the amplitude of the annual cycle have been observed, but the causes and significance of these changes remain poorly understood—in part because we lack an understanding of the natural variability. Here we show that the phase of the annual cycle of surface temperature over extratropical land shifted towards earlier seasons by 1.7 days between 1954 and 2007; this change is highly anomalous with respect to earlier variations, which we interpret as being indicative of the natural range. Significant changes in the amplitude of the annual cycle are also observed between 1954 and 2007. These shifts in the annual cycles appear to be related, in part, to changes in the northern annular mode of climate variability, although the land phase shift is significantly larger than that predicted by trends in the northern annular mode alone. Few of the climate models presented by the Intergovernmental Panel on Climate Change reproduce the observed decrease in amplitude and none reproduce the shift towards earlier seasons.
Eos, Transactions American Geophysical Union | 2008
F. Hugo Lambert; Alexander R. Stine; Nir Y. Krakauer; John C. H. Chiang
The advent of meteorological satellites during the 1970s made possible the observation of the seasonally shifting patterns of global precipitation. It was not until recently, however, that the record could be considered long enough to investigate longer-term trends and the relationship between global precipitation and global warming. Using data from the Special Sensor Microwave Imager (SSM/I) instrument, Wentz et al. [2007] reported that global mean precipitation increased at a rate of 7.4±2.6% per °C between 1987 and 2006. Meanwhile, general circulation models (GCMs) used to predict climate change simulate twentieth- and 21st-century mean precipitation increases of about 13% per °C [Held and Soden, 2006]. This difference seems surprising because some GCMs can adequately reproduce the much longer twentieth- century surface-based land-mean precipitation record [Lambert et al., 2005]. Global precipitation changes are tied to the surface energy budget through evaporation and to the tropospheric energy budget through condensation. Thus, if GCMs do underestimate global precipitation changes, the simulation of other climate variables will be affected.
Journal of Climate | 2012
Alexander R. Stine; Peter John Huybers
AbstractThe vast majority of variability in the instrumental surface temperature record is at annual frequencies. Systematic changes in the yearly Fourier component of surface temperature have been observed since the midtwentieth century, including a shift toward earlier seasonal transitions over land. Here it is shown that the variability in the amplitude and phase of the annual cycle of surface temperature in the northern extratropics is related to Northern Hemisphere atmospheric circulation as represented by the northern annular mode (NAM) and the Pacific–North America mode (PNA). The phase of the seasonal cycle is most strongly influenced by changes in spring atmospheric circulation, whereas amplitude is most strongly influenced by winter circulation. A statistical model is developed based on the NAM and PNA values in these seasons and it successfully predicts the interdecadal trends in the seasonal cycle using parameters diagnosed only at interannual time scales. In particular, 70% of the observed am...
Nature Communications | 2014
Alexander R. Stine; Peter John Huybers
Annual growth ring variations in Arctic trees are often used to reconstruct surface temperature. In general, however, the growth of Arctic vegetation is limited both by temperature and light availability, suggesting that variations in atmospheric transmissivity may also influence tree-ring characteristics. Here we show that Arctic tree-ring density is sensitive to changes in light availability across two distinct phenomena: explosive volcanic eruptions (P<0.01) and the recent epoch of global dimming (P<0.01). In each case, the greatest response is found in the most light-limited regions of the Arctic. Essentially no late 20th century decline in tree-ring density relative to temperature is seen in the least light-limited regions of the Arctic. Consistent results follow from analysis of tree-ring width and from individually analysing each of seven tree species. Light availability thus appears an important control, opening the possibility for using tree rings to reconstruct historical changes in surface light intensity.
Journal of Climate | 2013
Karen A. McKinnon; Alexander R. Stine; Peter John Huybers
The climatological annual cycle in surface air temperature, defined by its amplitude and phase lag with respect to solar insolation, is one of the most familiar aspects of the climate system. Here, the authors identify three first-order features of the spatial structure of amplitude and phase lag and explain them using simple physical models. Amplitude and phase lag 1) are broadly consistent with a land and ocean end-member mixing model but 2) exhibit overlap between land and ocean and, despite this overlap, 3) show a systematically greater lag over ocean than land for a given amplitude. Based on previous work diagnosing relative ocean or land influence as an important control on the extratropical annual cycle, the authors use a Lagrangian trajectory model to quantify this influence as the weighted amount of time that an ensemble of air parcels has spent over ocean or land. This quantity explains 84% of the space‐time variance in the extratropical annual cycle, as well as features 1 and 2. All three features can be explained using a simple energy balance model with land and ocean surfaces and an advecting atmosphere. This model explains 94% of the space‐time variance of the annual cycle in an illustrative midlatitude zonal band when incorporating the results of the trajectory model. The aforementioned features of annual variability in surface air temperature thus appear to be explained by the coupling of land and ocean through mean atmospheric circulation.
Geophysical Research Letters | 2014
Martin P. Tingley; Alexander R. Stine; Peter John Huybers
The fidelity of inferences on volcanic cooling from tree-ring density records has recently come into question, with competing claims that temperature reconstructions based on tree-ring records underestimate cooling due to an increased likelihood of missing rings or overestimate cooling due to reduced light availability accentuating the response. Here we test these competing hypotheses in the latitudes poleward of 45 ◦ N, using the two eruptions occurring between 1850 and 1960 with large-scale Northern Hemisphere climatic effects: Novarupta (1912) and Krakatau (1883). We find that tree-ring densities overestimate postvolcanic cooling with respect to instrumental data (Probability ≥ 0.99), with larger magnitudes of bias where growth is more limited by light availability (Prob. ≥ 0.95). Using a methodology that allows for direct comparisons with instrumental data, our results confirm that high-latitude tree-ring densities record not only temperature but also variations in light availability.
Environmental Research Letters | 2013
Francis Ludlow; Alexander R. Stine; Paul Leahy; Enda Murphy; Paul Andrew Mayewski; David Taylor; James E. Killen; M. G. L. Baillie; Mark Hennessy; Gerard Kiely
Explosive volcanism resulting in stratospheric injection of sulfate aerosol is a major driver of regional to global climatic variability on interannual and longer timescales. However, much of our knowledge of the climatic impact of volcanism derives from the limited number of eruptions that have occurred in the modern period during which meteorological instrumental records are available. We present a uniquely long historical record of severe short-term cold events from Irish chronicles, 431‐1649 CE, and test the association between cold event occurrence and explosive volcanism. Thirty eight (79%) of 48 volcanic events identified in the sulfate deposition record of the Greenland Ice Sheet Project 2 ice-core correspond to 37 (54%) of 69 cold events in this 1219 year period. We show this association to be statistically significant at the 99.7% confidence level, revealing both the consistency of response to explosive volcanism for Ireland’s climatically sensitive Northeast Atlantic location and the large proportional contribution of volcanism to historic cold event frequencies here. Our results expose, moreover, the extent to which volcanism has impacted winter-season climate for the region, and can help to further resolve the complex spatial patterns of Northern Hemisphere winter-season cooling versus warming after major eruptions.
Nature Communications | 2017
J. G. Manning; Francis Ludlow; Alexander R. Stine; William R. Boos; Michael Sigl; Jennifer R. Marlon
Volcanic eruptions provide tests of human and natural system sensitivity to abrupt shocks because their repeated occurrence allows the identification of systematic relationships in the presence of random variability. Here we show a suppression of Nile summer flooding via the radiative and dynamical impacts of explosive volcanism on the African monsoon, using climate model output, ice-core-based volcanic forcing data, Nilometer measurements, and ancient Egyptian writings. We then examine the response of Ptolemaic Egypt (305–30 BCE), one of the best-documented ancient superpowers, to volcanically induced Nile suppression. Eruptions are associated with revolt onset against elite rule, and the cessation of Ptolemaic state warfare with their great rival, the Seleukid Empire. Eruptions are also followed by socioeconomic stress with increased hereditary land sales, and the issuance of priestly decrees to reinforce elite authority. Ptolemaic vulnerability to volcanic eruptions offers a caution for all monsoon-dependent agricultural regions, presently including 70% of world population.The degree to which human societies have responded to past climatic changes remains unclear. Here, using a novel combination of approaches, the authors show how volcanically-induced suppression of Nile summer flooding led to societal unrest in Ptolemaic Egypt (305–30 BCE).
JAMA | 2006
Peter Lurie; Cristina M. Almeida; Nicholas W. Stine; Alexander R. Stine; Sidney M. Wolfe
Environmental Research Letters | 2017
Alexander R. Stine; Peter John Huybers