Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Y. Lushnikov is active.

Publication


Featured researches published by Alexander Y. Lushnikov.


Ultramicroscopy | 2003

Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials.

Luda S. Shlyakhtenko; Alexander Filonov; Zoran Cerovac; Alexander Y. Lushnikov; Yuri L. Lyubchenko

The procedure of surface functionalization based on the use of 1-(3-Aminopropyl)silatrane (APS) instead of our early procedure utilizing aminopropyl triethoxy silane (APTES) is described. Unlike APTES, APS is less reactive and extremely resistant to hydrolysis and polymerization at neutral pH. The kinetics of DNA adsorption to APS-mica was studied. The results are consistent with a diffusion controlled mechanism suggesting that DNA molecules bind irreversibly with the surface upon immobilization. This conclusion is supported by the data on imaging of supercoiled DNA, the labile conformations of which are very sensitive to the conditions at the surface-liquid interface. In addition, we demonstrated directly that the segments of DNA molecules could move along the surface if the sample is imaged in aqueous solution without drying of the sample. Using the time-lapse mode of AFM imaging we visualized the transition of purine-pyrimidine sequence in supercoiled DNA from intramolecular triple-helical conformation (H-form) into the B-helix upon the change of pH from acidic (pH 5) to neutral. The mechanisms of the H-to-B transitions and the correlation of the local structural transitions with a global DNA conformation are discussed.


Journal of Biological Chemistry | 2011

Atomic force microscopy studies provide direct evidence for dimerization of the HIV restriction factor APOBEC3G

Luda S. Shlyakhtenko; Alexander Y. Lushnikov; Ming Li; Lela Lackey; Reuben S. Harris; Yuri L. Lyubchenko

APOBEC3G (A3G) is an antiviral protein that binds RNA and single-stranded DNA (ssDNA). The oligomerization state of A3G is likely to be influenced by these nucleic acid interactions. We applied the power of nanoimaging atomic force microscopy technology to characterize the role of ssDNA in A3G oligomerization. We used recombinant human A3G prepared from HEK-293 cells and specially designed DNA substrates that enable free A3G to be distinguished unambiguously from DNA-bound protein complexes. This DNA substrate can be likened to a molecular ruler because it consists of a 235-bp double-stranded DNA visual tag spliced to a 69-nucleotide ssDNA substrate. This hybrid substrate enabled us to use volume measurements to determine A3G stoichiometry in both free and ssDNA-bound states. We observed that free A3G is primarily monomeric, whereas ssDNA-complexed A3G is mostly dimeric. A3G stoichiometry increased slightly with the addition of Mg2+, but dimers still predominated when Mg2+ was depleted. A His-248/His-250 Zn2+-mediated intermolecular bridge was observed in a catalytic domain crystal structure (Protein Data Bank code 3IR2); however, atomic force microscopy analyses showed that the stoichiometry of the A3G-ssDNA complexes changed insignificantly when these residues were mutated to Ala. We conclude that A3G exchanges between oligomeric forms in solution with monomers predominating and that this equilibrium shifts toward dimerization upon binding ssDNA.


Biochemistry | 2009

Dynamics of Nucleosomes Revealed by Time-Lapse Atomic Force Microscopy

Luda S. Shlyakhtenko; Alexander Y. Lushnikov; Yuri L. Lyubchenko

The dynamics of chromatin provides the access to DNA within nucleosomes, and therefore, this process is critically involved in the regulation of chromatin function. However, our knowledge of the large-range dynamics of nucleosomes is limited. Answers to the questions, such as the range of opening of the nucleosome and the mechanism via which the opening occurs and propagates, remain unknown. Here we applied single-molecule time-lapse atomic force microscopy (AFM) imaging to directly visualize the dynamics of nucleosomes and identify the mechanism of the large range DNA exposure. With this technique, we are able to observe the process of unwrapping of nucleosomes. The unwrapping of nucleosomes proceeds from the ends of the particles, allowing for the unwrapping of DNA regions as large as dozens of base pairs. This process may lead to a complete unfolding of nucleosomes and dissociation of the histone core from the complex. The unwrapping occurs in the absence of proteins involved in the chromatin remodeling that require ATP hydrolysis for their function, suggesting that the inherent dynamics of nucleosomes can contribute to the chromatin unwrapping process. These findings shed a new light on molecular mechanisms of nucleosome dynamics and provide novel hypotheses about the understanding of the action of remodeling proteins as well as other intracellular systems in chromatin dynamics.


Journal of Biological Chemistry | 2003

DNA Recombination HOLLIDAY JUNCTIONS DYNAMICS AND BRANCH MIGRATION

Alexander Y. Lushnikov; Alexey A. Bogdanov; Yuri L. Lyubchenko

Holliday junctions are critical intermediates for homologous, site-specific recombination, DNA repair, and replication. A wealth of structural information is available for immobile four-way junctions, but the controversy on the mechanism of branch migration of Holliday junctions remains unsolved. Two models for the mechanism of branch migration were suggested. According to the early model of Alberts-Meselson-Sigal (Sigal, N., and Alberts, B. (1972) J. Mol. Biol. 71, 789–793 and Meselson, M. (1972) J. Mol. Biol. 71, 795–798), exchanging DNA strands around the junction remain parallel during branch migration. Kinetic studies of branch migration (Panyutin, I. G., and Hsieh, P. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 2021–2025) suggest an alternative model in which the junction adopts an extended conformation. We tested these models using a Holliday junction undergoing branch migration and time-lapse atomic force microscopy, an imaging technique capable of imaging DNA dynamics. The single molecule atomic force microscopy experiments performed in the presence and in the absence of divalent cations show that mobile Holliday junctions adopt an unfolded conformation during branch migration that is retained despite a broad range of motion in the arms of the junction. This conformation of the junction remains unchanged until strand separation. The data obtained support the model for branch migration having the extended conformation of the Holliday junction.


Journal of Structural Biology | 2013

Atomic force microscopy studies of APOBEC3G oligomerization and dynamics

Luda S. Shlyakhtenko; Alexander Y. Lushnikov; Atsushi Miyagi; Ming Li; Reuben S. Harris; Yuri L. Lyubchenko

The DNA cytosine deaminase APOBEC3G (A3G) is a two-domain protein that binds single-stranded DNA (ssDNA) largely through its N-terminal domain and catalyzes deamination using its C-terminal domain. A3G is considered an innate immune effector protein, with a natural capacity to block the replication of retroviruses such as HIV and retrotransposons. However, knowledge about its biophysical properties and mechanism of interaction with DNA are still limited. Oligomerization is one of these unclear issues. What is the stoichiometry of the free protein? What are the factors defining the oligomeric state of the protein? How does the protein oligomerization change upon DNA binding? How stable are protein oligomers? We address these questions here using atomic force microscopy (AFM) to directly image A3G protein in a free-state and in complexes with DNA, and using time-lapse AFM imaging to characterize the dynamics of A3G oligomers. We found that the formation of oligomers is an inherent property of A3G and that the yield of oligomers depends on the protein concentration. Oligomerization of A3G in complexes with ssDNA follows a similar pattern: the higher the protein concentrations the larger oligomers sizes. The specificity of A3G binding to ssDNA does not depend on stoichiometry. The binding of large A3G oligomers requires a longer ssDNA substrate; therefore, much smaller oligomers form complexes with short ssDNA. A3G oligomers dissociate spontaneously into monomers and this process primarily occurs through a monomer dissociation pathway.


Nucleic Acids Research | 2010

DNA synapsis through transient tetramerization triggers cleavage by Ecl18kI restriction enzyme

Mindaugas Zaremba; Amelia Owsicka; Gintautas Tamulaitis; Giedrius Sasnauskas; Luda S. Shlyakhtenko; Alexander Y. Lushnikov; Yuri L. Lyubchenko; Niels Laurens; Bram van den Broek; Gijs Jan Lodewijk Wuite; Virginijus Siksnys

To cut DNA at their target sites, restriction enzymes assemble into different oligomeric structures. The Ecl18kI endonuclease in the crystal is arranged as a tetramer made of two dimers each bound to a DNA copy. However, free in solution Ecl18kI is a dimer. To find out whether the Ecl18kI dimer or tetramer represents the functionally important assembly, we generated mutants aimed at disrupting the putative dimer–dimer interface and analysed the functional properties of Ecl18kI and mutant variants. We show by atomic force microscopy that on two-site DNA, Ecl18kI loops out an intervening DNA fragment and forms a tetramer. Using the tethered particle motion technique, we demonstrate that in solution DNA looping is highly dynamic and involves a transient interaction between the two DNA-bound dimers. Furthermore, we show that Ecl18kI cleaves DNA in the synaptic complex much faster than when acting on a single recognition site. Contrary to Ecl18kI, the tetramerization interface mutant R174A binds DNA as a dimer, shows no DNA looping and is virtually inactive. We conclude that Ecl18kI follows the association model for the synaptic complex assembly in which it binds to the target site as a dimer and then associates into a transient tetrameric form to accomplish the cleavage reaction.


Nucleic Acids Research | 2006

Site-specific labeling of supercoiled DNA

Alexander Y. Lushnikov; Vladimir N. Potaman; Yuri L. Lyubchenko

Visualization of site-specific labels in long linear or circular DNA allows unambiguous identification of various local DNA structures. Here we describe a novel and efficient approach to site-specific DNA labeling. The restriction enzyme SfiI binds to DNA but leaves it intact in the presence of calcium and therefore may serve as a protein label of 13 bp recognition sites. Since SfiI requires simultaneous interaction with two DNA recognition sites for stable binding, this requirement is satisfied by providing an isolated recognition site in the DNA target and an additional short DNA duplex also containing the recognition site. The SfiI/DNA complexes were visualized with AFM and the specificity of the labeling was confirmed by the length measurements. Using this approach, two sites in plasmid DNA were labeled in the presence of a large excess of the helper duplex to compete with the formation of looped structures of the intramolecular synaptic complex. We show that the labeling procedure does not interfere with the superhelical tension-driven formation of alternative DNA structures such as cruciforms. The complex is relatively stable at low and high pH (pH 5 and 9) making the developed approach attractive for use at conditions requiring the pH change.


Biophysical Journal | 2010

Effect of single-strand break on branch migration and folding dynamics of Holliday junctions.

Dmytro Palets; Alexander Y. Lushnikov; Mikhail A. Karymov; Yuri L. Lyubchenko

The Holliday junction (HJ), or four-way junction, is a central intermediate state of DNA for homologous genetic recombination and other genetic processes such as replication and repair. Branch migration is the process by which the exchange of homologous DNA regions occurs, and it can be spontaneous or driven by proteins. Unfolding of the HJ is required for branch migration. Our previous single-molecule fluorescence studies led to a model according to which branch migration is a stepwise process consisting of consecutive migration and folding steps. Folding of the HJ in one of the folded conformations terminates the branch migration phase. At the same time, in the unfolded state HJ rapidly migrates over entire homology region of the HJ in one hop. This process can be affected by irregularities in the DNA double helical structure, so mismatches almost terminate a spontaneous branch migration. Single-stranded breaks or nicks are the most ubiquitous defects in the DNA helix; however, to date, their effect on the HJ branch migration has not been studied. In addition, although nicked HJs are specific substrates for a number of enzymes involved in DNA recombination and repair, the role of this substrate specificity remains unclear. Our main goal in this work was to study the effect of nicks on the efficiency of HJ branch migration and the dynamics of the HJ. To accomplish this goal, we applied two single-molecule methods: atomic force microscopy and fluorescence resonance energy transfer. The atomic force microscopy data show that the nick does not prevent branch migration, but it does decrease the probability that the HJ will pass the DNA lesion. The single-molecule fluorescence resonance energy transfer approaches were instrumental in detailing the effects of nicks. These studies reveal a dramatic change of the HJ dynamics. The nick changes the structure and conformational dynamics of the junctions, leading to conformations with geometries that are different from those for the intact HJ. On the basis of these data, we propose a model of branch migration in which the propensity of the junction to unfold decreases the lifetimes of folded states, thereby increasing the frequency of junction fluctuations between the folded states.


Langmuir | 2018

Dynamic behavior of RNA nanoparticles analyzed by AFM on a mica/air interface

Sameer Sajja; Morgan Chandler; Dmitry Federov; Wojciech K. Kasprzak; Alexander Y. Lushnikov; Mathias Viard; Ankit Shah; Dylan Dang; Jared Dahl; Beamlak Worku; Marina A. Dobrovolskaia; Alexey V. Krasnoslobodtsev; Bruce A. Shapiro; Kirill A. Afonin

RNA is an attractive biopolymer for engineering self-assembling materials suitable for biomedical applications. Previously, programmable hexameric RNA rings were developed for the controlled delivery of up to six different functionalities. To increase the potential for functionalization with little impact on nanoparticle topology, we introduce gaps into the double-stranded regions of the RNA rings. Molecular dynamic simulations are used to assess the dynamic behavior and the changes in the flexibility of novel designs. The changes suggested by simulations, however, cannot be clearly confirmed by the conventional techniques such as nondenaturing polyacrylamide gel electrophoresis (native-PAGE) and dynamic light scattering (DLS). Also, an in vitro analysis in primary cultures of human peripheral blood mononuclear cells does not reveal any discrepancy in the immunological recognition of new assemblies. To address these deficiencies, we introduce a computer-assisted quantification strategy. This strategy is based on an algorithmic atomic force microscopy (AFM)-resolved deformation analysis of the RNA nanoparticles studied on a mica/air interface. We validate this computational method by manual image analysis and fitting it to the simulation-predicted results. The presented nanoparticle modification strategy and subsequent AFM-based analysis are anticipated to provide a broad spectrum approach for the future development of nucleic acid-based nanotechnology.


Journal of Molecular Biology | 2005

Protein Interactions and Misfolding Analyzed by AFM Force Spectroscopy

Chad McAllister; Mikhail A. Karymov; Yoshiko Kawano; Alexander Y. Lushnikov; Andrew Mikheikin; Vladimir N. Uversky; Yuri L. Lyubchenko

Collaboration


Dive into the Alexander Y. Lushnikov's collaboration.

Top Co-Authors

Avatar

Yuri L. Lyubchenko

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Luda S. Shlyakhtenko

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Atsushi Miyagi

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ming Li

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre A. Vetcher

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Alexey V. Krasnoslobodtsev

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge