Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luda S. Shlyakhtenko is active.

Publication


Featured researches published by Luda S. Shlyakhtenko.


Journal of Biological Chemistry | 2005

Regulation of Poly(ADP-ribose) Polymerase-1 by DNA Structure-specific Binding

Irina Lonskaya; Vladimir N. Potaman; Luda S. Shlyakhtenko; Elena A. Oussatcheva; Yuri L. Lyubchenko; Viatcheslav A. Soldatenkov

Poly(ADP-ribose) polymerase-1 (PARP-1) is an intracellular sensor of DNA strand breaks and plays a critical role in cellular responses to DNA damage. In normally functioning cells, PARP-1 enzymatic activity has been linked to the alterations in chromatin structure associated with gene expression. However, the molecular determinants for PARP-1 recruitment to specific sites in chromatin in the absence of DNA strand breaks remain obscure. Using gel shift and enzymatic footprinting assays and atomic force microscopy, we show that PARP-1 recognizes distortions in the DNA helical backbone and that it binds to three- and four-way junctions as well as to stably unpaired regions in double-stranded DNA. PARP-1 interactions with non-B DNA structures are functional and lead to its catalytic activation. DNA hairpins, cruciforms, and stably unpaired regions are all effective co-activators of PARP-1 auto-modification and poly(ADP-ribosyl)ation of histone H1 in the absence of free DNA ends. Enzyme kinetic analyses revealed that the structural features of non-B form DNA co-factors are important for PARP-1 catalysis activated by undamaged DNA. K0.5 constants for DNA co-factors, which are structurally different in the degree of base pairing and spatial DNA organization, follow the order: cruciform ≤ hairpin « loop. DNA structure also influenced the reaction rate; when a hairpin was substituted with a stably unpaired region, the maximum reaction velocity decreased almost 2-fold. These data suggest a link between PARP-1 binding to non-B DNA structures in genome and its function in the dynamics of local modulation of chromatin structure in the normal physiology of the cell.


Methods | 2009

AFM for analysis of structure and dynamics of DNA and protein-DNA complexes

Yuri L. Lyubchenko; Luda S. Shlyakhtenko

This paper describes protocols for studies of structure and dynamics of DNA and protein-DNA complexes with atomic force microscopy (AFM) utilizing the surface chemistry approach. The necessary specifics for the preparation of functionalized surfaces and AFM probes with the use of silanes and silatranes, including the protocols for synthesis of silatranes are provided. The methodology of studies of local and global conformations DNA with the major focus on the time-lapse imaging of DNA in aqueous solutions is illustrated by the study of dynamics of Holliday junctions including branch migration. The analysis of nucleosome dynamics is selected as an example to illustrate the application of the time-lapse AFM to studies of dynamics of protein-DNA complexes. The force spectroscopy is the modality of AFM with a great importance to various fields of biomedical studies. The AFM force spectroscopy approach for studies of specific protein-DNA complexes is illustrated by the data on analysis of dynamics of synaptic SfiI-DNA complexes. When necessary, additional specifics are added to the corresponding example.


Methods | 2011

Imaging of nucleic acids with atomic force microscopy

Yuri L. Lyubchenko; Luda S. Shlyakhtenko; Toshio Ando

Atomic force microscopy (AFM) is a key tool of nanotechnology with great importance in applications to DNA nanotechnology and to the recently emerging field of RNA nanotechnology. Advances in the methodology of AFM now enable reliable and reproducible imaging of DNA of various structures, topologies, and DNA and RNA nanostructures. These advances are reviewed here with emphasis on methods utilizing modification of mica to prepare the surfaces enabling reliable and reproducible imaging of DNA and RNA nanostructures. Since the AFM technology for DNA is more mature, AFM imaging of DNA is introduced in this review to provide experience and background for the improvement of AFM imaging of RNA. Examples of imaging different structures of RNA and DNA are discussed and illustrated. Special attention is given to the potential use of AFM to image the dynamics of nucleic acids at the nanometer scale. As such, we review recent advances with the use of time-lapse AFM.


Journal of Biological Chemistry | 2011

Atomic force microscopy studies provide direct evidence for dimerization of the HIV restriction factor APOBEC3G

Luda S. Shlyakhtenko; Alexander Y. Lushnikov; Ming Li; Lela Lackey; Reuben S. Harris; Yuri L. Lyubchenko

APOBEC3G (A3G) is an antiviral protein that binds RNA and single-stranded DNA (ssDNA). The oligomerization state of A3G is likely to be influenced by these nucleic acid interactions. We applied the power of nanoimaging atomic force microscopy technology to characterize the role of ssDNA in A3G oligomerization. We used recombinant human A3G prepared from HEK-293 cells and specially designed DNA substrates that enable free A3G to be distinguished unambiguously from DNA-bound protein complexes. This DNA substrate can be likened to a molecular ruler because it consists of a 235-bp double-stranded DNA visual tag spliced to a 69-nucleotide ssDNA substrate. This hybrid substrate enabled us to use volume measurements to determine A3G stoichiometry in both free and ssDNA-bound states. We observed that free A3G is primarily monomeric, whereas ssDNA-complexed A3G is mostly dimeric. A3G stoichiometry increased slightly with the addition of Mg2+, but dimers still predominated when Mg2+ was depleted. A His-248/His-250 Zn2+-mediated intermolecular bridge was observed in a catalytic domain crystal structure (Protein Data Bank code 3IR2); however, atomic force microscopy analyses showed that the stoichiometry of the A3G-ssDNA complexes changed insignificantly when these residues were mutated to Ala. We conclude that A3G exchanges between oligomeric forms in solution with monomers predominating and that this equilibrium shifts toward dimerization upon binding ssDNA.


Toxicological Sciences | 2010

Mice Treated with Chlorpyrifos or Chlorpyrifos Oxon Have Organophosphorylated Tubulin in the Brain and Disrupted Microtubule Structures, Suggesting a Role for Tubulin in Neurotoxicity Associated with Exposure to Organophosphorus Agents

Wei Jiang; Ellen G. Duysen; Heidi Hansen; Luda S. Shlyakhtenko; Lawrence M. Schopfer; Oksana Lockridge

Exposure to organophosphorus (OP) agents can lead to learning and memory deficits. Disruption of axonal transport has been proposed as a possible explanation. Microtubules are an essential component of axonal transport. In vitro studies have demonstrated that OP agents react with tubulin and disrupt the structure of microtubules. Our goal was to determine whether in vivo exposure affects microtubule structure. One group of mice was treated daily for 14 days with a dose of chlorpyrifos that did not significantly inhibit acetylcholinesterase. Beta-tubulin from the brains of these mice was diethoxyphosphorylated on tyrosine 281 in peptide GSQQY(281)RALTVPELTQQMFDSK. A second group of mice was treated with a single sublethal dose of chlorpyrifos oxon (CPO). Microtubules and cosedimenting proteins from the brains of these mice were visualized by atomic force microscopy nanoimaging and by Coomassie blue staining of polyacrylamide gel electrophoresis bands. Proteins in gel slices were identified by mass spectrometry. Nanoimaging showed that microtubules from control mice were decorated with many proteins, whereas microtubules from CPO-treated mice had fewer associated proteins, a result confirmed by mass spectrometry of proteins extracted from gel slices. The dimensions of microtubules from CPO-treated mice (height 8.7 +/- 3.1 nm and width 36.5 +/- 15.5 nm) were about 60% of those from control mice (height 13.6 +/- 3.6 nm and width 64.8 +/- 15.9 nm). A third group of mice was treated with six sublethal doses of CPO over 50.15 h. Mass spectrometry identified diethoxyphosphorylated serine 338 in peptide NS(338)NFVEWIPNNVK of beta-tubulin. In conclusion, microtubules from mice exposed to chlorpyrifos or to CPO have covalently modified amino acids and abnormal structure, suggesting disruption of microtubule function. Covalent binding of CPO to tubulin and to tubulin-associated proteins is a potential mechanism of neurotoxicity.


Nucleic Acids Research | 2015

SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity

Kyle J. Seamon; Zhiqiang Sun; Luda S. Shlyakhtenko; Yuri L. Lyubchenko; James T. Stivers

The HIV-1 restriction factor SAMHD1 is a tetrameric enzyme activated by guanine nucleotides with dNTP triphosphate hydrolase activity (dNTPase). In addition to this established activity, there have been a series of conflicting reports as to whether the enzyme also possesses single-stranded DNA and/or RNA 3′-5′ exonuclease activity. SAMHD1 was purified using three chromatography steps, over which the DNase activity was largely separated from the dNTPase activity, but the RNase activity persisted. Surprisingly, we found that catalytic and nucleotide activator site mutants of SAMHD1 with no dNTPase activity retained the exonuclease activities. Thus, the exonuclease activity cannot be associated with any known dNTP binding site. Monomeric SAMHD1 was found to bind preferentially to single-stranded RNA, while the tetrameric form required for dNTPase action bound weakly. ssRNA binding, but not ssDNA, induces higher-order oligomeric states that are distinct from the tetrameric form that binds dNTPs. We conclude that the trace exonuclease activities detected in SAMHD1 preparations arise from persistent contaminants that co-purify with SAMHD1 and not from the HD active site. An in vivo model is suggested where SAMHD1 alternates between the mutually exclusive functions of ssRNA binding and dNTP hydrolysis depending on dNTP pool levels and the presence of viral ssRNA.


Biochemistry | 2009

Dynamics of Nucleosomes Revealed by Time-Lapse Atomic Force Microscopy

Luda S. Shlyakhtenko; Alexander Y. Lushnikov; Yuri L. Lyubchenko

The dynamics of chromatin provides the access to DNA within nucleosomes, and therefore, this process is critically involved in the regulation of chromatin function. However, our knowledge of the large-range dynamics of nucleosomes is limited. Answers to the questions, such as the range of opening of the nucleosome and the mechanism via which the opening occurs and propagates, remain unknown. Here we applied single-molecule time-lapse atomic force microscopy (AFM) imaging to directly visualize the dynamics of nucleosomes and identify the mechanism of the large range DNA exposure. With this technique, we are able to observe the process of unwrapping of nucleosomes. The unwrapping of nucleosomes proceeds from the ends of the particles, allowing for the unwrapping of DNA regions as large as dozens of base pairs. This process may lead to a complete unfolding of nucleosomes and dissociation of the histone core from the complex. The unwrapping occurs in the absence of proteins involved in the chromatin remodeling that require ATP hydrolysis for their function, suggesting that the inherent dynamics of nucleosomes can contribute to the chromatin unwrapping process. These findings shed a new light on molecular mechanisms of nucleosome dynamics and provide novel hypotheses about the understanding of the action of remodeling proteins as well as other intracellular systems in chromatin dynamics.


Methods of Molecular Biology | 2009

Atomic Force Microscopy Imaging and Probing of DNA, Proteins, and Protein-DNA Complexes: Silatrane Surface Chemistry

Yuri L. Lyubchenko; Luda S. Shlyakhtenko

Despite their rather recent invention, atomic force microscopes are widely available commercially. AFM and its special modifications (tapping mode and noncontact operation in solution) have been successfully used for topographic studies of a large number of biological objects including DNA, RNA, proteins, cell membranes, and even whole cells. AFM was also successfully applied to studies of nucleic acids and various protein DNA complexes. Part of this success is due to the development of reliable sample preparation procedures. This chapter describes one of the approaches based on chemical functionalization of mica surface with 1-(3-aminopropyl) silatrane (APS). One of the most important properties of APS-mica approach is that the sample can be deposited on the surface in a wide range of ionic strengths, in the absence of divalent cations and a broad range of pH. In addition to imaging of dried sample, APS-mica allows reliable and reproducible time lapse imaging in aqueous solutions. Finally, APS mica is terminated with reactive amino groups that can be used for covalent and ionic attachment of molecules for AFM force spectroscopy studies. The protocols for the preparation of APS, functionalization with APS mica and AFM probes, preparation of samples for imaging in air and in aqueous solutions, and force spectroscopy studies are outlined. All these applications are illustrated with a few examples.


Journal of Cellular Biochemistry | 2006

Nanoimaging for protein misfolding and related diseases

Yuri L. Lyubchenko; Simon Sherman; Luda S. Shlyakhtenko; Vladimir N. Uversky

Misfolding and aggregation of proteins is a common thread linking a number of important human health problems. The misfolded and aggregated proteins are inducers of cellular stress and activators of immunity in neurodegenerative diseases. They might posses clear cytotoxic properties, being responsible for the dysfunction and loss of cells in the affected organs. Despite the crucial importance of protein misfolding and abnormal interactions, very little is currently known about the molecular mechanism underlying these processes. Factors that lead to protein misfolding and aggregation in vitro are poorly understood, not to mention the complexities involved in the formation of protein nanoparticles with different morphologies (e.g., the nanopores) in vivo. A better understanding of the molecular mechanisms of misfolding and aggregation might facilitate development of the rational approaches to prevent pathologies mediated by protein misfolding. The conventional tools currently available to researchers can only provide an averaged picture of a living system, whereas much of the subtle or short‐lived information is lost. We believe that the existing and emerging nanotools might help solving these problems by opening the entirely novel pathways for the development of early diagnostic and therapeutic approaches. This article summarizes recent advances of the nanoscience in detection and characterization of misfolded protein conformations. Based on these findings, we outline our view on the nanoscience development towards identification intracellular nanomachines and/or multicomponent complexes critically involved in protein misfolding. J. Cell. Biochem.


Methods of Molecular Biology | 2013

Mica Functionalization for Imaging of DNA and Protein-DNA Complexes with Atomic Force Microscopy

Luda S. Shlyakhtenko; Yuri L. Lyubchenko

Surface preparation is a key step for reliable and reproducible imaging of DNA and protein-DNA complexes with atomic force microscopy (AFM). This article describes the approaches for chemical functionalization of the mica surface. One approach utilizes 3-aminopropyl-trietoxy silane (APTES), enabling one to obtain a smooth surface termed AP-mica. This surface binds nucleic acids and nucleoprotein complexes in a wide range of ionic strengths, in the absence of divalent cations and in a broad range of pH. Another method utilizes aminopropyl silatrane (APS) to yield an APS-mica surface. The advantage of APS-mica compared with AP-mica is the ability to obtain reliable and reproducible time-lapse images in aqueous solutions. The chapter describes the methodologies for the preparation of AP-mica and APS-mica surfaces and the preparation of samples for AFM imaging. The protocol for synthesis and purification of APS is also provided. The applications are illustrated with a number of examples.

Collaboration


Dive into the Luda S. Shlyakhtenko's collaboration.

Top Co-Authors

Avatar

Yuri L. Lyubchenko

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Y. Lushnikov

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ming Li

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Yangang Pan

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zhiqiang Sun

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Atsushi Miyagi

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander M. Portillo

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alexander V. Kabanov

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge