Alexandra J. Ramadan
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra J. Ramadan.
Journal of the American Chemical Society | 2017
Nobuya Sakai; Amir A. Haghighirad; Marina R. Filip; Pabitra K. Nayak; Simantini Nayak; Alexandra J. Ramadan; Zhiping Wang; Feliciano Giustino; Henry J. Snaith
Lead halide perovskites are materials with excellent optoelectronic and photovoltaic properties. However, some hurdles remain prior to commercialization of these materials, such as chemical stability, phase stability, sensitivity to moisture, and potential issues due to the toxicity of lead. Here, we report a new type of lead-free perovskite related compound, Cs2PdBr6. This compound is solution processable, exhibits long-lived photoluminescence, and an optical band gap of 1.6 eV. Density functional theory calculations indicate that this compound has dispersive electronic bands, with electron and hole effective masses of 0.53 and 0.85 me, respectively. In addition, Cs2PdBr6 is resistant to water, in contrast to lead-halide perovskites, indicating excellent prospects for long-term stability. These combined properties demonstrate that Cs2PdBr6 is a promising novel compound for optoelectronic applications.
Journal of Materials Chemistry C | 2015
Alexandra J. Ramadan; Luke A. Rochford; Dean Samuel Keeble; Paul J. Sullivan; Mary P. Ryan; Tim Jones; Sandrine Heutz
Elevated substrate temperature growth of phthalocyanine thin films is known to influence film morphology and increase crystallinity. Structural templating offers another method through which the structure of phthalocyanine films can be controlled. Here we combine the use of copper iodide (CuI) and elevated substrate temperatures and investigate their effect on the growth of a non-planar phthalocyanine system. Employing X-ray diffraction and atomic force microscopy we present detailed surface and crystal structure information. Vanadyl phthalocyanine (VOPc) is shown to adopt an edge-on orientation on CuI at ambient substrate temperatures, a behaviour in stark contrast to that of previously studied planar phthalocyanine molecules. Elevated substrate temperature is shown to result in changes in the surface morphology and structure demonstrating the versatility of the system. The crystal structure of VOPc was redetermined and used to infer the molecular orientation of the various VOPc/CuI bilayer structures.
Journal of Physical Chemistry Letters | 2017
Alexandra J. Ramadan; Luke A. Rochford; Sarah Fearn; Henry J. Snaith
Cesium lead triiodide (CsPbI3) is an attractive material for photovoltaic applications due to its appropriate band gap, strong optical absorption, and high thermal stability. However, the perovskite phase suffers from moisture induced structural instability. Previous studies have utilized a range of solvent systems to establish the role of solvent choice in structural instabilities. Despite this, effects of different solvents on the electronic structure of this material have not been compared. We report substantial chemical and compositional differences in thin films of CsPbI3 prepared from a range of solvent systems. We confirm via X-ray diffraction thin films formed from DMF, DMSO, and a mixture of these solvent systems share the same crystal structure. However, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, and low energy ion scattering measurements reveal significant differences between films processed via different solvent systems. Our findings reveal the critical impact solvents have upon compositional stoichiometry and thin-film morphology.
RSC Advances | 2015
Alexandra J. Ramadan; Luke A. Rochford; Mary P. Ryan; Tim Jones; Sandrine Heutz
Metal oxide thin films are increasingly utilized in small molecular organic photovoltaic devices to facilitate electron transport and injection. Despite this there is little understanding of the influence these layers have on the structure of adjacent organic semiconductor layers. Here we use both O- and Zn-terminated (0001) single crystal zinc oxide (ZnO) as a model system to investigate the effect of a metal oxide surface on the growth of a molecular semiconductor, vanadyl phthalocyanine (VOPc). The surface reconstructions of these model surfaces are determined and the properties of thin films of VOPc deposited atop are investigated. The nature of the bulk truncation of the surface is found to have pronounced effects on both the morphology and crystal structure of these molecular films. This work highlights the importance of considering the effects of the chemical composition and surface termination of metal oxide films on the structure of adjacent molecular semiconductor films.
RSC Advances | 2016
Alexandra J. Ramadan; Christian B. Nielsen; Sarah Holliday; Tim Jones; Iain McCulloch; Luke A. Rochford
The growth of monolayers of truxenone on Cu (111) is investigated using scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). Two distinct molecular packing motifs are observed that exist individually at low and high coverage, and coexist at intermediate states. In each case a commensurate epitaxial relationship between the molecular surface mesh and the substrate is observed.
Journal of the American Chemical Society | 2018
Pabitra K. Nayak; Michael Sendner; Bernard Wenger; Zhiping Wang; Kshama Sharma; Alexandra J. Ramadan; Robert Lovrincic; Annemarie Pucci; P.K. Madhu; Henry J. Snaith
Intrinsic organic-inorganic metal halide perovskites (OIHP) based semiconductors have shown wide applications in optoelectronic devices. There have been several attempts to incorporate heterovalent metal (e.g., Bi3+) ions in the perovskites in an attempt to induce electronic doping and increase the charge carrier density in the semiconductor. It has been reported that inclusion of Bi3+ decreases the band gap of the material considerably. However, contrary to the earlier conclusions, despite a clear change in the appearance of the crystal as observed by eye, here we show that the band gap of MAPbBr3 crystals does not change due the presence of Bi3+ in the growth solution. An increased density of states in the band gap and use of very thick samples for transmission measurements, erroneously give the impression of a band gap shift. These sub band gap states also act as nonradiative recombination centers in the crystals.
RSC Advances | 2016
Luke A. Rochford; Alexandra J. Ramadan; Sarah Holliday; Tim Jones; Christian B. Nielsen
The surface structure of partially fluorinated truxenone (F3-truxenone) molecules on Cu (111) has been probed using a combination of scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). Codeposition of F3-truxenone and the parent truxenone molecule leads to a mix of discrete F3-truxenone and truxenone islands on a Cu (111) surface. Due to the differences in rotational orientation of each type of molecular island proved by LEED the otherwise indistiguishable molecules can be identified in STM images.
RSC Advances | 2016
Alexandra J. Ramadan; Sarah Fearn; Tim Jones; Sandrine Heutz; Luke A. Rochford
Structural templating is frequently used in organic photovoltaic devices to control the properties of the functional layers and therefore improve efficiencies. Modification of the substrate temperatures has also been shown to impact the structure and morphology of phthalocyanine thin films. Here we combine templating by copper iodide and high substrate temperature growth and study its effect on the structure and morphology of two different non-planar phthalocyanines, chloroaluminium (ClAlPc) and vanadyl (VOPc) phthalocyanine. X-ray diffraction, atomic force microscopy and low energy ion scattering show that both the morphology and the structure of the films are starkly different in every case, highlighting the versatility of phthalocyanine film growth.
Journal of Physical Chemistry C | 2018
P.J. Blowey; R.J. Maurer; L.A. Rochford; David A. Duncan; J.-H. Kang; D.A. Warr; Alexandra J. Ramadan; Tien-Lin Lee; P.K. Thakur; Giovanni Costantini; Karsten Reuter; D.P. Woodruff
The local structure of the nonplanar phthalocyanine, vanadyl phthalocyanine (VOPc), adsorbed on Cu(111) at a coverage of approximately one-half of a saturated molecular layer, has been investigated by a combination of normal-incidence X-ray standing waves (NIXSW), scanned-energy mode photoelectron diffraction (PhD), and density-functional theory (DFT), complemented by scanning tunnelling microscopy (STM). Qualitative assessment of the NIXSW data clearly shows that both “up” and “down” orientations of the molecule (with V=O pointing out of, and into, the surface) must coexist on the surface. O 1s PhD proves to be inconclusive regarding the molecular orientation. DFT calculations, using two different dispersion correction schemes, show good quantitative agreement with the NIXSW structural results for equal co-occupation of the two different molecular orientations and clearly favor the many body dispersion (MBD) method to deal with long-range dispersion forces. The calculated relative adsorption energies of the differently oriented molecules at the lowest coverage show a strong preference for the “up” orientation, but at higher local coverages, this energetic difference decreases, and mixed orientation phases are almost energetically equivalent to pure “up”-oriented phases. DFT-based Tersoff–Hamann simulations of STM topographs for the two orientations cast some light on the extent to which such images provide a reliable guide to molecular orientation.
Journal of Materials Chemistry C | 2016
Alexandra J. Ramadan; Luke A. Rochford; Jonathan Moffat; Chris Mulcahy; Mary P. Ryan; Tim Jones; Sandrine Heutz
The electric field of ferroelectric materials has been used as a driving force to promote molecular adsorption and control the orientation of small dipolar molecules. This approach has not been investigated on larger polyaromatic molecules, such as those used in organic electronic devices, even though the physical and electronic properties of thin films are strongly dependent on molecular structure and orientation, ultimately affecting device performance. Here we investigate the effects of model ferroelectric surfaces on a dipolar organic semiconducting molecule. Thin films of vanadyl phthalocyanine (VOPc) deposited on to (0001) and (20) lithium niobate were subjected to structural and morphological analysis. Whilst thin films could be grown on these surfaces, no obvious change to their structure or morphology was observed suggesting there was no influence of a surface electrical field or surface chemistry on the film structure, and that the substrate is more complex than previously thought.