Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard Wenger is active.

Publication


Featured researches published by Bernard Wenger.


Journal of Physical Chemistry Letters | 2016

Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals

George Volonakis; Marina R. Filip; Amir A. Haghighirad; Nobuya Sakai; Bernard Wenger; Henry J. Snaith; Feliciano Giustino

Lead-based halide perovskites are emerging as the most promising class of materials for next-generation optoelectronics; however, despite the enormous success of lead-halide perovskite solar cells, the issues of stability and toxicity are yet to be resolved. Here we report on the computational design and the experimental synthesis of a new family of Pb-free inorganic halide double perovskites based on bismuth or antimony and noble metals. Using first-principles calculations we show that this hitherto unknown family of perovskites exhibits very promising optoelectronic properties, such as tunable band gaps in the visible range and low carrier effective masses. Furthermore, we successfully synthesize the double perovskite Cs2BiAgCl6, perform structural refinement using single-crystal X-ray diffraction, and characterize its optical properties via optical absorption and photoluminescence measurements. This new perovskite belongs to the Fm3̅m space group and consists of BiCl6 and AgCl6 octahedra alternating in a rock-salt face-centered cubic structure. From UV-vis and photoluminescence measurements we obtain an indirect gap of 2.2 eV.


Advanced Materials | 2016

Structured Organic-Inorganic Perovskite toward a Distributed Feedback Laser.

Michael Saliba; Simon M. Wood; Jay B. Patel; Pabitra K. Nayak; Jian Huang; Jack A. Alexander-Webber; Bernard Wenger; Samuel D. Stranks; Maximilian T. Hörantner; Jacob Tse-Wei Wang; R. J. Nicholas; Laura M. Herz; Michael B. Johnston; Stephen M. Morris; Henry J. Snaith; Moritz Riede

A general strategy for the in-plane structuring of organic-inorganic perovskite films is presented. The method is used to fabricate an industrially relevant distributed feedback (DFB) cavity, which is a critical step toward all-electrially pumped injection laser diodes. This approach opens the prospects of perovskite materials for much improved optical control in LEDs, solar cells, and also toward applications as optical devices.


Applied Physics Letters | 2010

Mechanically tunable conjugated polymer distributed feedback lasers

Bernard Wenger; Nicolas Tétreault; Mark E. Welland; Richard H. Friend

Herein we report a low-threshold organic laser device based on semiconducting poly(9,9′-dioctylfluoren-2,7-diyl-alt-benzothiadiazole) (F8BT) encapsulated in a mechanically stretchable polydimethylsiloxane (PDMS) matrix. We take advantage of the natural flexibility of PDMS to alter the periodicity of the distributed feedback grating which in turn tunes the gain wavelength at which the resonant feedback is obtained. This way, we demonstrate that low-threshold lasing [6.1 μJ cm−2 (5.3 nJ)] is maintained over a large stretching range of 0%–7% which translates into a tuning range of about 20 nm.


Energy and Environmental Science | 2017

A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

Nakita K. Noel; Severin N. Habisreutinger; Bernard Wenger; Matthew T. Klug; Maximilian T. Hörantner; Michael B. Johnston; R. J. Nicholas; David T. Moore; Henry J. Snaith

Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aprotic solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 °C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.


Nature Communications | 2016

Mechanism for rapid growth of organic–inorganic halide perovskite crystals

Pabitra K. Nayak; David T. Moore; Bernard Wenger; Simantini Nayak; Amir A. Haghighirad; Adam Fineberg; Nakita K. Noel; Obadiah G. Reid; Garry Rumbles; Philipp Kukura; Kylie A. Vincent; Henry J. Snaith

Optoelectronic devices based on hybrid halide perovskites have shown remarkable progress to high performance. However, despite their apparent success, there remain many open questions about their intrinsic properties. Single crystals are often seen as the ideal platform for understanding the limits of crystalline materials, and recent reports of rapid, high-temperature crystallization of single crystals should enable a variety of studies. Here we explore the mechanism of this crystallization and find that it is due to reversible changes in the solution where breaking up of colloids, and a change in the solvent strength, leads to supersaturation and subsequent crystallization. We use this knowledge to demonstrate a broader range of processing parameters and show that these can lead to improved crystal quality. Our findings are therefore of central importance to enable the continued advancement of perovskite optoelectronics and to the improved reproducibility through a better understanding of factors influencing and controlling crystallization.


Journal of Applied Physics | 2008

Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer

Myoung Hoon Song; Bernard Wenger; Richard H. Friend

We report the optical pumping of one-dimensional distributed feedback (DFB) conjugated polymer devices using a uniaxially aligned liquid crystalline polymer, poly(9,9-dioctylfluorene). We can independently select the alignment direction (via a rubbed polyimide layer) and the DFB structure (via nanoimprinting). In comparison with unaligned film, we show that lasing threshold is substantially reduced when absorption is parallel to the aligned direction (∼20.0 μJ cm−2 pulse−1). This is mainly due to the higher absorption coefficient estimated in the table by calculating the exciton densities at each threshold value. We also report the control of lasing wavelength through independent selection of alignment direction and DFB orientation, which is achieved through the control of the effective refractive index of waveguide (neff).


Nature Communications | 2017

Consolidation of the optoelectronic properties of CH 3 NH 3 PbBr 3 perovskite single crystals

Bernard Wenger; Pabitra K. Nayak; Xiaoming Wen; Sameer V. Kesava; Nakita K. Noel; Henry J. Snaith

Ultralow trap densities, exceptional optical and electronic properties have been reported for lead halide perovskites single crystals; however, ambiguities in basic properties, such as the band gap, and the electronic defect densities in the bulk and at the surface prevail. Here, we synthesize single crystals of methylammonium lead bromide (CH3NH3PbBr3), characterise the optical absorption and photoluminescence and show that the optical properties of single crystals are almost identical to those of polycrystalline thin films. We observe significantly longer lifetimes and show that carrier diffusion plays a substantial role in the photoluminescence decay. Contrary to many reports, we determine that the trap density in CH3NH3PbBr3 perovskite single crystals is 1015 cm−3, only one order of magnitude lower than in the thin films. Our enhanced understanding of optical properties and recombination processes elucidates ambiguities in earlier reports, and highlights the discrepancies in the estimation of trap densities from electronic and optical methods.Metal halide perovskites for optoelectronic devices have been extensively studied in two forms: single-crystals or polycrystalline thin films. Using spectroscopic approaches, Wenger et al. show that polycrystalline thin films possess similar optoelectronic properties to single crystals.


Nanotechnology | 2010

Inexpensive and fast wafer-scale fabrication of nanohole arrays in thin gold films for plasmonics

Mona J. K. Klein; Mickaël Guillaumée; Bernard Wenger; Andrea Dunbar; Jürgen Brugger; Harry Heinzelmann; Raphaël Pugin

In this paper, a fast and inexpensive wafer-scale process for the fabrication of arrays of nanoscale holes in thin gold films for plasmonics is shown. The process combines nanosphere lithography using spin-coated polystyrene beads with a sputter-etching process. This allows the batch fabrication of several 1000 microm(2) large hole arrays in 200 nm thick gold films without the use of an adhesion layer for the gold film. The hole size and lattice period can be tuned independently with this method. This allows tuning of the optical properties of the hole arrays for the desired application. An example application, refractive index sensing, is demonstrated.


Chimia | 2005

Origin of the kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II)-complex dyes to nanocrystalline semiconducting particles

Bernard Wenger; Michael Grätzel; Jacques-E. Moser

Interfacial electron transfer from a molecular dye to a semiconductor is a keystone process in the conversion of light into electricity in dye-sensitized solar cells. The most successful devices developed so far are basedon the sensitization of nanocrystalline titanium dioxide by ruthenium polypyridyl complexes. The ultrafast electron injection from the widely used Ru I I (dcbpy) 2 (NCS) 2 dye in particular has been intensely studied. Several research groups, including ours, have found that this reaction apparently proceeds with a fast sub-100 fs phase, followed by a slower kinetic component with a time constant of 0.7-100 ps and accounting for 16-65% of the total yield. No convincing explanation has been provided for a clear understanding of the origin of this non-exponential kinetic behavior. In this contribution we show that aggregation of dye molecules at the interface is actually responsible for the slow kinetic component of the interfacial electron transfer. A thorough control of the dissolution of the dye and of its adsorption onto nanocrystalline oxide films allowed the reduction of the portion of dye excited states that react within the slow compartment and even made the latter completely disappear. In the absence of dye aggregates, femtosecond pump-probe studies of the sensitizers oxidized state appearance yielded a rate constant for charge injection >5×10 1 3 s - 1 , corresponding to an electron transfer time of less than 20 fs.


Biosensors and Bioelectronics | 2012

Au-labeled antibodies to enhance the sensitivity of a refractometric immunoassay: Detection of cocaine

Bernard Wenger; Karl Kugelbrey; Hui Gao; Hans Sigrist; Guy Voirin

An integrated platform for a very sensitive detection of cocaine based on a refractometric biosensor is demonstrated. The system uses a waveguide grating biosensor functionalized with a cocaine multivalent antigen-carrier protein conjugate. The immunoassay scheme consists of the competitive binding of cocaine-specific antibodies to the immobilized conjugates. A 1000-fold enhancement of the sensors sensitivity is achieved when using gold conjugated monoclonal antibodies instead of free antibodies. Together with the optimization of the assay conditions, the setup is designed for a quick identification of narcotics using automated sampling. The results show that the presence of cocaine in a liquid sample could be identified down to a concentration of 0.7 nM within one minute. This value can be reduced even further when longer binding time is allowed (0.2 nM after 15 min). Application of the system to detection of narcotics at airport security control points is discussed.

Collaboration


Dive into the Bernard Wenger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacques-E. Moser

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Michael Grätzel

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Raphaël Pugin

Swiss Center for Electronics and Microtechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge