Alexandra Meinl
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra Meinl.
Annals of Surgery | 2011
Rainer Mittermayr; Joachim Hartinger; Vlado Antonic; Alexandra Meinl; Sabine Pfeifer; Alexander Stojadinovic; Wolfgang Schaden; Heinz Redl
Objective: To assess the time-dependent treatment effects of extracorporeal shock wave therapy (ESWT) in a standard rodent ischemic epigastric flap model. Background: ESWT has been shown to accelerate tissue repair in acute and chronic wounds and improve graft survival, but the mechanism remains incompletely understood. Methods: Shock waves at 0.1 mJ/mm2 and 5 impulses/s (total 300 impulses) were applied to the epigastric flap ischemic region at various times pre-, immediately and 24 hours postischemic insult. Flap survival; vascular perfusion; vessel number; von Willebrand factor and smooth muscle actin protein expression as well as in vivo vascular endothelial growth factor receptor 2 expression were evaluated at 1, 3, and 7 days postoperatively in ESWT-treated and untreated controls. Results: Flap perfusion, microvessel number, and survival (through reduced flap contraction and necrosis) were significantly enhanced in the treated groups compared with controls, irrespective of timing of shock wave treatment (preischemia vs. postischemia). Vascular endothelial growth factor receptor 2 expression was dynamically upregulated in response to ESWT. Conclusion: Shock wave preconditioning and treatment postischemic insult improves skin flap survival through neovascularization and early upregulation of angiogenesis-related growth factors.
Journal of Tissue Engineering and Regenerative Medicine | 2015
Wolfgang Holnthoner; Karin Hohenegger; Anna-Maria Husa; Severin Muehleder; Alexandra Meinl; Anja Peterbauer-Scherb; Heinz Redl
Vascularization of engineered tissues is one of the current challenges in tissue engineering. Several strategies aim to generate a prevascularized scaffold which can be implanted at sites of injury or trauma. Endothelial cells derived from peripheral blood (outgrowth endothelial cells, OECs) display promising features for vascular tissue engineering, including their autologous nature, capacity for proliferation and ability to form mature vessels. In this study we investigated the ability of OECs to form vascular structures in co‐culture with adipose‐derived stem cells (ASCs) in a fibrin matrix. Using microcarrier beads coated with OECs, we showed ingrowth of endothelial cells in the fibrin scaffold. Furthermore, co‐cultures with ASCs induced vessel formation, as evidenced by immunostaining for CD31. The degradation of fibrin is at least in part mediated by expression of matrix metalloproteinase‐14. Moreover, we showed OEC/ASC‐induced vessel‐like structure formation even in the absence of microcarrier beads, where increasing amounts of ASCs resulted in a denser tubular network. Our data add new insights into co‐culture‐induced vessel formation of outgrowth endothelial cells within a fibrin matrix in an autologous system. Copyright
Biomaterials | 2010
Andrea Lindenmair; Susanne Wolbank; Guido Stadler; Alexandra Meinl; Anja Peterbauer-Scherb; Johann Eibl; Helene Polin; Christian Gabriel; Martijn van Griensven; Heinz Redl
Tissue engineering strategies usually require cell isolation and combination with a suitable biomaterial. Human amniotic membrane (AM) represents a natural two-layered sheet comprising cells with proven stem cell characteristics. In our approach, we evaluated the differentiation potential of AM in toto with its sessile stem cells as alternative to conventional approaches requiring cell isolation and combination with biomaterials. For this, AM-biopsies were differentiated in vitro using two osteogenic media compared with control medium (CM) for 28 days. Mineralization and osteocalcin expression was demonstrated by (immuno)histochemistry. Alkaline phosphatase (AP) activity, calcium contents and mRNA expression of RUNX2, AP, osteopontin, osteocalcin, BMP-2 (bone morphogenetic protein), and BMP-4 were quantified and AM viability was evaluated. Under osteogenic conditions, AM-biopsies mineralized successfully and by day 28 the majority of cells expressed osteocalcin. This was confirmed by a significant rise in calcium contents (up to 27.4 ± 6.8 mg/dl d28), increased AP activity, and induction of RUNX2, AP, BMP-2 and BMP-4 mRNA expression. Relatively high levels of viability were retained, especially in osteogenic media (up to 78.3 ± 19.0% d14; 62.9 ± 22.3% d28) compared to CM (42.2 ± 15.2% d14; 35.1 ± 8.6% d28). By this strategy, stem cells within human AM can successfully be driven along the osteogenic pathways while residing within their natural environment.
Journal of Tissue Engineering and Regenerative Medicine | 2010
Anja Peterbauer-Scherb; M. van Griensven; Alexandra Meinl; Christian Gabriel; Heinz Redl; Susanne Wolbank
Large animals such as pigs are good models for skeletal tissue engineering, since they provide physical forces similar to those of humans. Porcine bone marrow mesenchymal stem cells (BMSCs) have shown regenerative capacity similar to those of human BMSCs and can therefore be preclinically applied in settings corresponding to autologous transplantation in patients. Aiming at a one‐step procedure for cartilage regeneration with autologous BMSCs, three straightforward isolation methods for BMSCs of Göttingen minipigs were compared. For this purpose, the BMSC fraction was enriched by red blood cell (RBC) lysis, dextran sedimentation or density gradient centrifugation. Isolated BMSCs were evaluated with regard to cell yield, proliferation capacity, phenotype and ability to differentiate to the chondrogenic lineage. Highest cell yields determined at the time of subcultivation were obtained using RBC lysis. In comparison, dextran sedimentation was less efficient but superior to density gradient centrifugation, which yielded significantly lower cell numbers than RBC lysis. The evaluated isolation methods resulted in cultures with equal proliferative capacity, with constant population doubling times of 50–55 h for at least 100 days (approximating to 40 cumulative population doublings) in vitro. Chondrogenic differentiation in micromass pellet cultures was evaluated by glycosaminoglycan quantification, histological staining with Alcian blue and safranin O and immunohistochemical analysis for collagen type II. These evaluations demonstrated that all three isolation methods yielded cells capable of generating cartilaginous tissue in vitro. According to our data, RBC lysis can be used to efficiently isolate porcine BMSCs in a short time frame which would allow for intraoperative one‐step procedures in preclinical cartilage regeneration studies. Copyright
Journal of Tissue Engineering and Regenerative Medicine | 2015
Susanne Wolbank; Valentin Pichler; James Crawford Ferguson; Alexandra Meinl; Martijn van Griensven; Andreas Goppelt; Heinz Redl
Fibrin‐based sealants consist of natural coagulation factors involved in the final phase of blood coagulation, during which fibrinogen is enzymatically converted by thrombin to form a solid‐phase fibrin clot. For applications in tissue regeneration, a controlled process of matrix degradation within a certain period of time is essential for optimal wound healing. Hence, it is desirable to follow the kinetics of fibrinolysis at the application site. Non‐invasive molecular imaging systems enable real‐time tracking of processes in the living animal. In this study, a non‐invasive fluorescence based imaging system was applied to follow and quantify site‐specific degradation of fibrin sealant. To enable non‐invasive tracking of fibrin in vivo, fibrin‐matrix was labelled by incorporation of a fluorophore‐conjugated fibrinogen component. Protein degradation and release of fluorescence were, in a first step, correlated in vitro. In vivo, fluorophore‐labelled fibrin was subcutaneously implanted in mice and followed throughout the experiment using a multispectral imaging system. For the fluorescent fibrin, degradation correlated with the release of fluorescence from the clots in vitro. In vivo it was possible to follow and quantify implanted fibrin clots throughout the experiment, demonstrating degradation kinetics of approximately 16 days in the subcutaneous compartment, which was further confirmed by histological evaluation of the application site. Copyright
Wound Repair and Regeneration | 2014
Alfred Gugerell; Waltraud Pasteiner; Sylvia Nürnberger; Johanna Kober; Alexandra Meinl; Sabine Pfeifer; Joachim Hartinger; Susanne Wolbank; Andreas Goppelt; Heinz Redl; Rainer Mittermayr
Fibrin biomatrices have been used for many years for hemostasis and sealing and are a well‐established surgical tool. The objective of the present study was to compare two commercially available fibrin biomatrices regarding the effect of their thrombin concentration on keratinocytes and wound healing in vitro and in vivo. Keratinocytes showed significant differences in adhesion, viability, and morphology in the presence of the fibrin matrices in vitro. A high thrombin concentration (800–1,200 IU/mL) caused deteriorated cell compatibility. By using a thrombin inhibitor, those differences could be reversed. In a rat excisional wound healing model, we observed more rapid wound closure and less wound severity in wounds treated with a fibrin matrix containing a lower concentration of thrombin (4 IU/mL). Furthermore, fewer new functional vessels and a lower level of vascular endothelial growth factor were measured in wounds after 7 days treated with the matrix with higher thrombin concentration. These in vivo results may be partially explained by the in vitro biocompatibility data. Additionally, results show that low thrombin biomatrices were degraded faster than the high thrombin material. Hence, we conclude that the composition of fibrin biomatrices influences keratinocytes and therefore has an impact on wound healing.
Archive | 2010
Sylvia Nürnberger; Susanne Wolbank; Anja Peterbauer-Scherb; Tatjana Morton; Georg Feichtinger; Alfred Gugerell; Alexandra Meinl; Krystyna Labuda; Michaela Bittner; Waltraud Pasteiner; Lila Nikkola; Christian Gabriel; Martijn van Griensven; Heinz Redl
Clot formation is an essential mechanism for wound closure and its principle is ubiquitous in the animal kingdom, comprising invertebrates such as arthropods, echinoderms, and cephalopods as well as all classes of vertebrates (Alsberg and Clark, 1908; Xu and Doolittle, 1990; Feral, 2010). The general principle of coagulation is the conversion of proteins to fibrous material by enzyme reaction in the presence of blood cells. Although the reacting partners (proteins, enzymes, and cell types) strongly differ between the animal groups, the final product always consists mainly or partly of fibrous material. Its functionality seems to rely on the formation of a gauze-like cover sealing the lesion.
Biomedical Materials | 2013
Veronika Hruschka; Alexandra Meinl; Aram Omer Saeed; Racha Cheikh Al Ghanami; Heinz Redl; Kevin M. Shakesheff; Susanne Wolbank
Thermoreversible hydrogels for tissue engineering (TE) purposes have gained increased attention in recent years as they can be combined with cells and drugs and directly injected into the body. Following the fate of transplanted cells in situ is essential in characterizing their distribution and survival, as well as the expression of specific markers or cell-matrix interactions. Existing histological embedding methods, such as paraffin wax embedding, can mechanically damage some biomaterials during processing. In this study, we describe a broadly applicable preparation protocol that allows the handling of delicate, thermoreversible scaffolds for histological sectioning. The gelatin solution permits the embedding of samples at 37 °C, which suits the solid phase of most TE scaffolds. A thermoreversible scaffold of polycaprolactone microparticles, combined with poly(polyethylene glycol methacrylate ethyl ether) and containing human adipose-derived stem cells, was prepared for histology by an initial gelatin embedding step in addition to the standard cryosectioning and paraffin processing protocols. Sections were evaluated by hematoxylin eosin staining and immunostaining for human vimentin. The gelatin embedding retained the scaffold particles and permitted the complete transfer of the construct. After rapid cooling, the solid gelatin blocks could be cryosectioned and paraffin infiltrated. In contrast to direct cryosectioning or paraffin infiltration, the extended protocol preserved the scaffold structure as well as the relevant cell epitopes, which subsequently allowed for immunostaining of human cells within the material. The gelatin embedding method proposed is a generalizable alternative to standard preparations for histological examination of a variety of delicate samples.
Tissue Engineering Part C-methods | 2010
Paulo C. Bessa; Elizabeth R. Balmayor; Joachim Hartinger; Gerald Zanoni; Daniela Dopler; Alexandra Meinl; Asmita Banerjee; Margarida Casal; Heinz Redl; Rui L. Reis; Martijn van Griensven
Cell and Tissue Banking | 2014
Andrea Lindenmair; Sylvia Nürnberger; Guido Stadler; Alexandra Meinl; Christa Hackl; Johann Eibl; Christian Gabriel; Simone Hennerbichler; Heinz Redl; Susanne Wolbank