Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvia Nürnberger is active.

Publication


Featured researches published by Sylvia Nürnberger.


Journal of Controlled Release | 2010

Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs

Paulo C. Bessa; Raul Machado; Sylvia Nürnberger; Daniela Dopler; Asmita Banerjee; A. M. Cunha; J. Carlos Rodríguez-Cabello; Heinz Redl; Martijn van Griensven; Rui L. Reis; Margarida Casal

Elastin-like polymers are a new type of protein-based polymers that display interesting properties in the biomaterial field. Bone morphogenetic proteins (BMPs) are cytokines with a strong ability to promote new bone formation. In this work, we explored the use of elastin-like nanoparticles (average size 237.5+/-3.0 nm), created by thermoresponsive self-assembly, for the combined release of bone morphogenetic protein-2 (BMP-2) and bone morphogenetic protein-14 (BMP-14). These BMPs could be encapsulated at high efficiency into the elastin-like particles and delivered in a sustained way for 14 days. The activity of the growth factors was retained, as shown by the induction of ALP activity and osteogenic mineralization in C2C12 cells. Increased bioactivity was observed with a combined release of BMP-2 and BMP-14. This approach shows a significant potential for future tissue engineering applications in bone.


Journal of Tissue Engineering and Regenerative Medicine | 2010

Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release

Paulo C. Bessa; Elizabeth R. Balmayor; Helena S. Azevedo; Sylvia Nürnberger; Margarida Casal; M. van Griensven; Rui L. Reis; Heinz Redl

Bone morphogenetic proteins (BMPs) are cytokines with strong ability to promote new bone formation. Herein, we report the use of silk fibroin microparticles as carriers for the delivery of BMP‐2, BMP‐9 or BMP‐14. BMP‐containing fibroin microparticles were prepared by a mild methodology using dropwise addition of ethanol, exhibiting mean diameters of 2.7 ± 0.3 µm. Encapsulation efficiencies varied between 67.9 ± 6.1 % and 97.7 ± 2.0 % depending on the type and the amount of BMP loaded. Release kinetics showed that BMP‐2, BMP‐9 and BMP‐14 were released in two phases profile, with a burst release in the first two days followed by a slower release, for a period of 14 days. The release data were best explained by Korsmeyers model and the Fickian model of drug diffusion. Silk fibroin microparticles can offer a promising approach for the sustained delivery of different BMPs in tissue engineering applications. Copyright


Nanotechnology | 2011

Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes

Mark Geppert; Michaela C. Hohnholt; Karsten Thiel; Sylvia Nürnberger; Ingo Grunwald; Kurosch Rezwan; Ralf Dringen

Magnetic iron oxide nanoparticles (Fe-NP) are currently considered for various diagnostic and therapeutic applications in the brain. However, little is known on the accumulation and biocompatibility of such particles in brain cells. We have synthesized and characterized dimercaptosuccinic acid (DMSA) coated Fe-NP and have investigated their uptake by cultured brain astrocytes. DMSA-coated Fe-NP that were dispersed in physiological medium had an average hydrodynamic diameter of about 60 nm. Incubation of cultured astrocytes with these Fe-NP caused a time- and concentration-dependent accumulation of cellular iron, but did not lead within 6 h to any cell toxicity. After 4 h of incubation with 100-4000 µM iron supplied as Fe-NP, the cellular iron content reached levels between 200 and 2000 nmol mg⁻¹ protein. The cellular iron content after exposure of astrocytes to Fe-NP at 4 °C was drastically lowered compared to cells that had been incubated at 37 °C. Electron microscopy revealed the presence of Fe-NP-containing vesicles in cells that were incubated with Fe-NP at 37 °C, but not in cells exposed to the nanoparticles at 4 °C. These data demonstrate that cultured astrocytes efficiently take up DMSA-coated Fe-NP in a process that appears to be saturable and strongly depends on the incubation temperature.


Acta Biomaterialia | 2012

Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles

Mark Geppert; Michaela C. Hohnholt; Sylvia Nürnberger; Ralf Dringen

To investigate the cellular consequences of a prolonged cellular presence of large amounts of iron oxide nanoparticles (IONPs) as well as the fate of such particles in brain cells, cultured primary astrocytes were loaded for 4h with dimercaptosuccinate-coated IONPs. Subsequently, the IONP-treated cells were incubated for up to 7 days in IONP-free medium and the cell viability, metabolic parameters and iron metabolism of the cells were investigated. Despite an up to 100-fold elevated specific cellular iron content, IONP-loaded cells remained viable throughout the 7 day main incubation and did not show any substantial alteration in glucose and glutathione metabolism. During the incubation, the high cellular iron content of IONP-loaded astrocytes remained almost constant. Electron microscopy revealed that after 7 days of incubation most of the cellular iron was still present in IONP-filled vesicles. However, the transient appearance of reactive oxygen species (ROS) as well as a strong increase in cellular levels of the iron storage protein ferritin suggest that at least some low-molecular-weight iron was liberated from the accumulated IONPs. These results demonstrate that even the prolonged presence of large amounts of accumulated IONPs does not harm astrocytes and that these cells store IONP-derived iron in ferritin.


Biomedical Materials | 2015

Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction

L. Utomo; Mieke M. Pleumeekers; Luc Nimeskern; Sylvia Nürnberger; Kathryn S. Stok; Florian Hildner; Gerjo J.V.M. van Osch

Scaffolds are widely used to reconstruct cartilage. Yet, the fabrication of a scaffold with a highly organized microenvironment that closely resembles native cartilage remains a major challenge. Scaffolds derived from acellular extracellular matrices are able to provide such a microenvironment. Currently, no report specifically on decellularization of full thickness ear cartilage has been published. In this study, decellularized ear cartilage scaffolds were prepared and extensively characterized. Cartilage decellularization was optimized to remove cells and cell remnants from elastic cartilage. Following removal of nuclear material, the obtained scaffolds retained their native collagen and elastin contents as well as their architecture and shape. High magnification scanning electron microscopy showed no obvious difference in matrix density after decellularization. However, glycosaminoglycan content was significantly reduced, resulting in a loss of viscoelastic properties. Additionally, in contact with the scaffolds, human bone-marrow-derived mesenchymal stem cells remained viable and are able to differentiate toward the chondrogenic lineage when cultured in vitro. These results, including the ability to decellularize whole human ears, highlight the clinical potential of decellularization as an improved cartilage reconstruction strategy.


Acta Biomaterialia | 2016

Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts.

Karl Schneider; Petra Aigner; Wolfgang Holnthoner; Xavier Monforte; Sylvia Nürnberger; Dominik Rünzler; Heinz Redl; Andreas Herbert Teuschl

UNLABELLED Biomaterials based on decellularized tissues are increasingly attracting attention as functional alternatives to other natural or synthetic materials. However, a source of non-cadaver human allograft material would be favorable. Here we establish a decellularization method of vascular tissue from cryopreserved human placenta chorionic plate starting with an initial freeze-thaw step followed by a series of chemical treatments applied with a custom-made perfusion system. This novel pulsatile perfusion set-up enabled us to successfully decellularize the vascular tissue with lower concentrations of chemicals and shorter exposure times compared to a non-perfusion process. The decellularization procedure described here lead to the preservation of the native extracellular matrix architecture and the removal of cells. Quantitative analysis revealed no significant changes in collagen content and a retained glycosaminoglycan content of approximately 29%. In strain-to-failure tests, the decellularized grafts showed similar mechanical behavior compared to native controls. In addition, the mechanical values for ultimate tensile strength and stiffness were in an acceptable range for in vivo applications. Furthermore, biocompatibility of the decellularized tissue and its recellularizationability to serve as an adequate substratum for upcoming recellularization strategies using primary human umbilical vein endothelial cells (HUVECs) was demonstrated. HUVECs cultured on the decellularized placenta vessel matrix performed endothelialization and maintained phenotypical characteristics and cell specific expression patterns. Overall, the decellularized human placenta vessels can be a versatile tool for experimental studies on vascularization and as potent graft material for future in vivo applications. STATEMENT OF SIGNIFICANCE In the US alone more than 1million vascular grafts are needed in clinical practice every year. Despite severe disadvantages, such as donor site morbidity, autologous grafting from the patients own arteries or veins is regarded as the gold standard for vascular tissue repair. Besides, strategies based on synthetic or natural materials have shown limited success. Tissue engineering approaches based on decellularized tissues are regarded as a promising alternative to clinically used treatments to overcome the observed limitations. However, a source for supply of non-cadaver human allograft material would be favorable. Here, we established a decellularization method of vascular tissue from the human placenta chorionic plate, a suitable human tissue source of consistent quality. The decellularized human placenta vessels can be a potent graft material for future in vivo applications and furthermore might be a versatile tool for experimental studies on vascularization.


Biochimica et Biophysica Acta | 2009

Endotoxin causes functional endoplasmic reticulum failure, possibly mediated by mitochondria

Andrey V. Kozlov; J. Catharina Duvigneau; Ingrid Miller; Sylvia Nürnberger; Bernd Gesslbauer; Wolfgang Öhlinger; Romana T. Hartl; Lars Gille; Katrin Staniek; Wolfgang Gregor; Susanne Haindl; Heinz Redl

Inflammatory response has recently been shown to induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), which either recovers proper ER function or activates apoptosis. Here we show that endotoxin (lipopolysaccharide = LPS) can lead to functional ER failure tentatively via a mitochondrion-dependent pathway in livers of rats. Histological examination did not reveal significant damage to liver in form of necroses. Electron microscopy displayed transparent rings appearing around morphologically unchanged mitochondria, which were identified as dilated ER. The spliced mRNA variant of X-box protein-1 (XBP1) and also the mRNA of 78 kDa glucose-regulated protein (GRP78) were up-regulated, both typical markers of ER stress. However, GRP78 was down-regulated at the protein level. A pro-apoptotic shift in the bax/bcl-XL mRNA ratio was not accompanied by translocation of apoptosis inducing factor (AIF) to the nucleus, suggesting that the cells entered a pre-apoptotic state, but apoptosis was not executed. Monooxygenase activity of p450, representing the detoxification system in ER, was decreased after administration of endotoxin. Biochemical analysis of proteins important for ER function revealed the impairment of protein folding, transport, and detoxification suggesting functional ER failure. We suggest that functional ER failure may be a reason for organ dysfunction upon excessive inflammatory response mediated by endotoxin.


Journal of Biomedical Materials Research Part A | 2010

FGF-2 abolishes the chondrogenic effect of combined BMP-6 and TGF-β in human adipose derived stem cells

Florian Hildner; Anja Peterbauer; Susanne Wolbank; Sylvia Nürnberger; Stefan Marlovits; Heinz Redl; Martijn van Griensven; Christian Gabriel

In this study, we investigated the influence of transforming growth factor beta 3 (TGF-beta3), bone morphogenetic protein 6 (BMP-6) and basic fibroblast growth factor (FGF-2) on chondrogenesis in adipose derived stem cells (ASC). Cells were isolated from liposuction material, expanded and subjected to chondrogenic differentiation. Micromass pellets were cultured in chondrogenic medium containing 10 ng/mL TGF-beta3 which was additionally supplemented with 10 ng/mL BMP-6, 10 ng/mL FGF-2 or a combination of both. We quantitatively evaluated the cartilage specific gene expression after 14 days of culture. The end point measurements on day 35 included glycosaminoglycan (GAG) quantification, histological staining for chondrogenic markers, and transmission electron microscopy (TEM). In comparison to cultures induced with TGF-beta3/FGF-2, the presence of TGF-beta3/BMP-6 demonstrated strong induction of collagen type II, collagen type IX and aggrecan mRNA expression. This was corroborated by quantification and histological staining for GAGs and immunohistological staining for collagen II. However, when a combination of BMP-6 and FGF-2 in addition to TGF-beta3 was added, FGF-2 counteracted BMP-6, as indicated by reduced marker gene expression and weak to absent staining for GAGs. In conclusion, this study demonstrates that BMP-6 combined with TGF-beta3 is a potent inducer of chondrogenesis in human ASC. In contrast, FGF-2 does not contribute to differentiation, but rather suppresses the chondrogenic potential of BMP-6.


Journal of Nanotechnology in Engineering and Medicine | 2015

Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation

Marica Markovic; Jasper Van Hoorick; Katja Hölzl; Maximilian Tromayer; Peter Gruber; Sylvia Nürnberger; Peter Dubruel; Sandra Van Vlierberghe; Robert Liska; Aleksandr Ovsianikov

Three-dimensional (3D) printing offers versatile possibilities for adapting the structural parameters of tissue engineering scaffolds. However, it is also essential to develop procedures allowing efficient cell seeding independent of scaffold geometry and pore size. The aim of this study was to establish a method for seeding the scaffolds using photopolymerizable cell-laden hydrogels. The latter facilitates convenient preparation, and handling of cell suspension, while distributing the hydrogel precursor throughout the pores, before it is cross-linked with light. In addition, encapsulation of living cells within hydrogels can produce constructs with high initial cell loading and intimate cell-matrix contact, similar to that of the natural extra-cellular matrix (ECM). Three dimensional scaffolds were produced from poly(lactic) acid (PLA) by means of fused deposition modeling. A solution of methacrylamide-modified gelatin (Gel-MOD) in cell culture medium containing photoinitiator Li-TPO-L was used as a hydrogel precursor. Being an enzymatically degradable derivative of natural collagen, gelatin-based matrices are biomimetic and potentially support the process of cell-induced remodeling. Preosteoblast cells MC3T3-E1 at a density of 10 × 106 cells per 1 mL were used for testing the seeding procedure and cell proliferation studies. Obtained results indicate that produced constructs support cell survival and proliferation over extended duration of our experiment. The established two-step approach for scaffold seeding with the cells is simple, rapid, and is shown to be highly reproducible. Furthermore, it enables precise control of the initial cell density, while yielding their uniform distribution throughout the scaffold. Such hybrid tissue engineering constructs merge the advantages of rigid 3D printed constructs with the soft hydrogel matrix, potentially mimicking the process of ECM remodeling.


Journal of Endodontics | 2015

Effects of Prolyl Hydroxylase Inhibitor L-mimosine on Dental Pulp in the Presence of Advanced Glycation End Products.

Heinz-Dieter Müller; Barbara Cvikl; Klara Janjić; Sylvia Nürnberger; Andreas Moritz; Reinhard Gruber; Hermann Agis

INTRODUCTION Proangiogenic prolyl hydroxylase (PHD) inhibitors represent a novel approach to stimulate tissue regeneration. Diabetes mellitus involves the accumulation of advanced glycation end products (AGEs). Here we evaluated the impact of AGEs on the response of human pulp tissue to the PHD inhibitor L-mimosine (L-MIM) in monolayer cultures of dental pulp-derived cells (DPCs) and tooth slice organ cultures. METHODS In monolayer cultures, DPCs were incubated with L-MIM and AGEs. Viability was assessed based on formazan formation, live-dead staining, annexin V/propidium iodide, and trypan blue exclusion assay. Vascular endothelial growth factor (VEGF), interleukin (IL)-6, and IL-8 production was evaluated by quantitative polymerase chain reaction and immunoassays. Furthermore, expression levels of odontoblast markers were assessed, and alizarin red staining was performed. Tooth slice organ cultures were performed, and VEGF, IL-6, and IL8 levels in their supernatants were measured by immunoassays. Pulp tissue vitality and morphology were assessed by MTT assay and histology. RESULTS In monolayer cultures of DPCs, L-MIM at nontoxic concentrations increased the production of VEGF and IL-8 in the presence of AGEs. Stimulation with L-MIM decreased alkaline phosphatase levels and matrix mineralization also in the presence of AGEs, whereas no significant changes in dentin matrix protein 1 and dentin sialophosphoprotein expression were observed. In tooth slice organ cultures, L-MIM increased VEGF but not IL-6 and IL-8 production in the presence of AGEs. The pulp tissue was vital, and no signs of apoptosis or necrosis were observed. CONCLUSIONS Overall, in the presence of AGEs, L-MIM increases the proangiogenic capacity, but decreases alkaline phosphatase expression and matrix mineralization.

Collaboration


Dive into the Sylvia Nürnberger's collaboration.

Top Co-Authors

Avatar

Heinz Redl

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Stefan Marlovits

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Susanne Wolbank

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Christian Albrecht

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Alfred Gugerell

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Brigitte Tichy

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Silke Aldrian

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Andreas Herbert Teuschl

University of Applied Sciences Technikum Wien

View shared research outputs
Top Co-Authors

Avatar

Lukas Zak

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

S. Marlovits

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge