Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Benani is active.

Publication


Featured researches published by Alexandre Benani.


Endocrinology | 2010

Nutritional programming affects hypothalamic organization and early response to leptin.

Bérengère Coupé; Valérie Amarger; Isabelle Grit; Alexandre Benani; Patricia Parnet

Nutritional programming, taking place in utero or early after birth, is closely linked with metabolic and appetite disorders in adulthood. Following the hypothesis that nutritional programming impacts hypothalamic neuronal organization, we report on discrepancies of multiple molecular and cellular early events that take place in the hypothalamus of rats submitted to intrauterine growth restriction (IUGR). Expression screening performed on hypothalami from IUGR rats at birth and at postnatal d 12 identified changes in gene expression of neurodevelopmental process (cell differentiation and cytoskeleton organization). Additionally, a slight reduction of agouti-related protein and a strong reduction of alpha-MSH-immunoreactive efferent fibers were demonstrated in the paraventricular nucleus of IUGR rats. Rapid catch-up growth of IUGR rats, 5 d after birth, had a positive effect on neurodevelopmental factors and on neuronal projections emanating from the arcuate nucleus. The molecular and cellular anomalies detected in IUGR rats can be related to the reduced and delayed plasma leptin surge from d 0-16 when compared with control and IUGR rats with catch-up growth. However, the ability of leptin to activate intracellular signaling in arcuate nucleus neurons was not reduced in IUGR rats. Other mechanism such as epigenetic regulation of the major appetite-regulating neuropeptides genes was analyzed in parallel with their mRNA expression during postnatal development. This study reveals the importance of an early catch-up growth that reduces abnormal organization of hypothalamic pathways involved in energy homeostasis, whereas protein restriction, maintained during postnatal development leads to an important immaturity of the hypothalamus.


Diabetes | 2007

Role for mitochondrial reactive oxygen species in brain lipid sensing : Redox regulation of food intake

Alexandre Benani; Stéphanie Troy; Maria del Carmen Carmona; Xavier Fioramonti; Anne Lorsignol; Corinne Leloup; Louis Casteilla; Luc Pénicaud

The ability for the brain to sense peripheral fuel availability is mainly accomplished within the hypothalamus, which detects ongoing systemic nutrients and adjusts food intake and peripheral metabolism as needed. Here, we hypothesized that mitochondrial reactive oxygen species (ROS) could trigger sensing of nutrients within the hypothalamus. For this purpose, we induced acute hypertriglyceridemia in rats and examined the function of mitochondria in the hypothalamus. Hypertriglyceridemia led to a rapid increase in the mitochondrial respiration in the ventral hypothalamus together with a transient production of ROS. Cerebral inhibition of fatty acids–CoA mitochondrial uptake prevented the hypertriglyceridemia-stimulated ROS production, indicating that ROS derived from mitochondrial metabolism. The hypertriglyceridemia-stimulated ROS production was associated with change in the intracellular redox state without any noxious cytotoxic effects, suggesting that ROS function acutely as signaling molecules. Moreover, cerebral inhibition of hypertriglyceridemia-stimulated ROS production fully abolished the satiety related to the hypertriglyceridemia, suggesting that hypothalamic ROS production was required to restrain food intake during hypertriglyceridemia. Finally, we found that fasting disrupted the hypertriglyceridemia-stimulated ROS production, indicating that the redox mechanism of brain nutrient sensing could be modulated under physiological conditions. Altogether, these findings support the role of mitochondrial ROS as molecular actors implied in brain nutrient sensing.


Diabetes | 2006

Mitochondrial Reactive Oxygen Species Are Required for Hypothalamic Glucose Sensing

Corinne Leloup; Christophe Magnan; Alexandre Benani; Emilie Bonnet; Thierry Alquier; Géraldine Offer; Audrey Carrière; Alain Periquet; Yvette Fernandez; Alain Ktorza; Louis Casteilla; Luc Pénicaud

The physiological signaling mechanisms that link glucose sensing to the electrical activity in metabolism-regulating hypothalamus are still controversial. Although ATP production was considered the main metabolic signal, recent studies show that the glucose-stimulated signaling in neurons is not totally dependent on this production. Here, we examined whether mitochondrial reactive oxygen species (mROS), which are physiologically generated depending on glucose metabolism, may act as physiological sensors to monitor the glucose-sensing response. Transient increase from 5 to 20 mmol/l glucose stimulates reactive oxygen species (ROS) generation on hypothalamic slices ex vivo, which is reversed by adding antioxidants, suggesting that hypothalamic cells generate ROS to rapidly increase glucose level. Furthermore, in vivo, data demonstrate that both the glucose-induced increased neuronal activity in arcuate nucleus and the subsequent nervous-mediated insulin release might be mimicked by the mitochondrial complex blockers antimycin and rotenone, which generate mROS. Adding antioxidants such as trolox and catalase or the uncoupler carbonyl cyanide m-chlorophenylhydrazone in order to lower mROS during glucose stimulation completely reverses both parameters. In conclusion, the results presented here clearly show that the brain glucose-sensing mechanism involved mROS signaling. We propose that this mROS production plays a key role in brain metabolic signaling.


Diabetes | 2012

Apelin treatment increases complete Fatty Acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice.

Camille Attané; Camille Foussal; Sophie Le Gonidec; Alexandre Benani; Danièle Daviaud; Estelle Wanecq; Rocío Guzmán-Ruiz; Cédric Dray; Véronic Bézaire; Chloé Rancoule; Keiji Kuba; Mariano Ruiz-Gayo; Thierry Levade; Josef M. Penninger; Rémy Burcelin; Luc Pénicaud; Philippe Valet; Isabelle Castan-Laurell

Both acute and chronic apelin treatment have been shown to improve insulin sensitivity in mice. However, the effects of apelin on fatty acid oxidation (FAO) during obesity-related insulin resistance have not yet been addressed. Thus, the aim of the current study was to determine the impact of chronic treatment on lipid use, especially in skeletal muscles. High-fat diet (HFD)-induced obese and insulin-resistant mice treated by an apelin injection (0.1 μmol/kg/day i.p.) during 4 weeks had decreased fat mass, glycemia, and plasma levels of triglycerides and were protected from hyperinsulinemia compared with HFD PBS-treated mice. Indirect calorimetry experiments showed that apelin-treated mice had a better use of lipids. The complete FAO, the oxidative capacity, and mitochondrial biogenesis were increased in soleus of apelin-treated mice. The action of apelin was AMP-activated protein kinase (AMPK) dependent since all the effects studied were abrogated in HFD apelin-treated mice with muscle-specific inactive AMPK. Finally, the apelin-stimulated improvement of oxidative capacity led to decreased levels of acylcarnitines and enhanced insulin-stimulated glucose uptake in soleus. Thus, by promoting complete lipid use in muscle of insulin-resistant mice through mitochondrial biogenesis and tighter matching between FAO and the tricarboxylic acid cycle, apelin treatment could contribute to insulin sensitivity improvement.


Endocrinology | 2008

Brain glucagon-like peptide 1 signaling controls the onset of high-fat diet-induced insulin resistance, and reduces energy expenditure

Claude Knauf; Patrice D. Cani; Afifa Ait-Belgnaoui; Alexandre Benani; Cédric Dray; Cendrine Cabou; André Colom; Marc Uldry; Sophie Rastrelli; Eric Sabatier; Natacha Godet; Aurélie Waget; Luc Pénicaud; Philippe Valet; Rémy Burcelin

Glucagon-like peptide-1 (GLP-1) is a peptide released by the intestine and the brain. We previously demonstrated that brain GLP-1 increases glucose-dependent hyperinsulinemia and insulin resistance. These two features are major characteristics of the onset of type 2 diabetes. Therefore, we investigated whether blocking brain GLP-1 signaling would prevent high-fat diet (HFD)-induced diabetes in the mouse. Our data show that a 1-month chronic blockage of brain GLP-1 signaling by exendin-9 (Ex9), totally prevented hyperinsulinemia and insulin resistance in HFD mice. Furthermore, food intake was dramatically increased, but body weight gain was unchanged, showing that brain GLP-1 controlled energy expenditure. Thermogenesis, glucose utilization, oxygen consumption, carbon dioxide production, muscle glycolytic respiratory index, UCP2 expression in muscle, and basal ambulatory activity were all increased by the exendin-9 treatment. Thus, we have demonstrated that in response to a HFD, brain GLP-1 signaling induces hyperinsulinemia and insulin resistance and decreases energy expenditure by reducing metabolic thermogenesis and ambulatory activity.


Current Opinion in Clinical Nutrition and Metabolic Care | 2006

Brain glucose sensing: a subtle mechanism.

Luc Pénicaud; Corinne Leloup; Xavier Fioramonti; Anne Lorsignol; Alexandre Benani

Purpose of reviewBrain nutrient sensing allows a fine regulation of different physiological functions, such as food intake and blood glucose, related to energy homeostasis. Glucose sensing is the most studied function and a parallel has been made between the cellular mechanisms involved in pancreatic β cells and neurons. Recent findingsTwo types of glucosensing neurons have been characterized – those for which the activity is proportional to changes in glucose concentration and those for which the activity is inversely proportional to these changes. A new level of complexity has recently been demonstrated, as the response and the mechanism appear to vary in function according to the level of the glucose change. For some of the responses, the detection is probably not at the level of the neuron itself, but astrocytes also appear to be involved, indicating a coupling between the two types of cells. Finally, numerous data have demonstrated the modulation of glucose sensing by other nutrients, in particular fatty acids, hormones (insulin, leptin and ghrelin) and peptides (neuropeptide Y). This implies a common pathway in which AMPkinase may play a crucial role. SummaryRecent observations in brain nutrient sensing indicate subtle mechanisms, with different cellular and molecular mechanisms involved. This fact would explain the discrepancies reported in the expression of different proteins (glucose transporters, hexokinases, channels). Astrocytes may be involved in one type of response, thus adding a new level of complexity.


Diabetes | 2009

Hypothalamic Reactive Oxygen Species Are Required for Insulin-Induced Food Intake Inhibition: An NADPH Oxidase–Dependent Mechanism

Tristan Jaillard; Michael Roger; Anne Galinier; Pascale Guillou; Alexandre Benani; Corinne Leloup; Louis Casteilla; Luc Pénicaud; Anne Lorsignol

OBJECTIVE Insulin plays an important role in the hypothalamic control of energy balance, especially by reducing food intake. Emerging data point to a pivotal role of reactive oxygen species (ROS) in energy homeostasis regulation, but their involvement in the anorexigenic effect of insulin is unknown. Furthermore, ROS signal derived from NADPH oxidase activation is required for physiological insulin effects in peripheral cells. In this study, we investigated the involvement of hypothalamic ROS and NADPH oxidase in the feeding behavior regulation by insulin. RESEARCH DESIGN AND METHODS We first measured hypothalamic ROS levels and food intake after acute intracerebroventricular injection of insulin. Second, effect of pretreatment with a ROS scavenger or an NADPH oxidase inhibitor was evaluated. Third, we examined the consequences of two nutritional conditions of central insulin unresponsiveness (fasting or short-term high-fat diet) on the ability of insulin to modify ROS level and food intake. RESULTS In normal chow-fed mice, insulin inhibited food intake. At the same dose, insulin rapidly and transiently increased hypothalamic ROS levels by 36%. The pharmacological suppression of this insulin-stimulated ROS elevation, either by antioxidant or by an NADPH oxidase inhibitor, abolished the anorexigenic effect of insulin. Finally, in fasted and short-term high-fat diet–fed mice, insulin did not promote elevation of ROS level and food intake inhibition, likely because of an increase in hypothalamic diet-induced antioxidant defense systems. CONCLUSIONS A hypothalamic ROS increase through NADPH oxidase is required for the anorexigenic effect of insulin.


Antioxidants & Redox Signaling | 2011

Balancing Mitochondrial Redox Signaling: A Key Point in Metabolic Regulation

Corinne Leloup; Louis Casteilla; Audrey Carrière; Anne Galinier; Alexandre Benani; Lionel Carneiro; Luc Pénicaud

Mitochondrial reactive oxygen species (mROS) have emerged as signaling molecules in physiology primarily as a result of studies of uncoupling mechanisms in mitochondrial respiration. The discovery that this mechanism negatively regulates mROS generation in many cell types has drawn the attention of the scientific community to the pathological consequences of excess mROS production. From reports of the energetic fluxes in cells grown under normal conditions, the hypothesis that mROS are an integrated physiological signal of the metabolic status of the cell has emerged. Here, we consider recent studies that support this point of view in two key nutrient sensors of the body, beta cells and the hypothalamus, which are the main coordinators of endocrine and nervous controls of energy metabolism and adipose tissue, which is of paramount importance in controlling body weight and, therefore, the development of obesity and type 2 diabetes. In this context, finely balanced mROS production may be at the core of proper metabolic maintenance, and unbalanced mROS production, which is largely documented, might be an important trigger of metabolic disorders.


Antioxidants & Redox Signaling | 2014

Hypothalamic Apelin/Reactive Oxygen Species Signaling Controls Hepatic Glucose Metabolism in the Onset of Diabetes

Anne Drougard; Thibaut Duparc; Xavier Brenachot; Lionel Carneiro; Alexandra Gouazé; Audren Fournel; Lucie Geurts; Thomas Cadoudal; Anne-Catherine Prats; Luc Pénicaud; Didier Vieau; Jean Lesage; Corinne Leloup; Alexandre Benani; Patrice D. Cani; Philippe Valet; Claude Knauf

AIMS We have previously demonstrated that central apelin is implicated in the control of peripheral glycemia, and its action depends on nutritional (fast versus fed) and physiological (normal versus diabetic) states. An intracerebroventricular (icv) injection of a high dose of apelin, similar to that observed in obese/diabetic mice, increase fasted glycemia, suggesting (i) that apelin contributes to the establishment of a diabetic state, and (ii) the existence of a hypothalamic to liver axis. Using pharmacological, genetic, and nutritional approaches, we aim at unraveling this system of regulation by identifying the hypothalamic molecular actors that trigger the apelin effect on liver glucose metabolism and glycemia. RESULTS We show that icv apelin injection stimulates liver glycogenolysis and gluconeogenesis via an over-activation of the sympathetic nervous system (SNS), leading to fasted hyperglycemia. The effect of central apelin on liver function is dependent of an increased production of hypothalamic reactive oxygen species (ROS). These data are strengthened by experiments using lentiviral vector-mediated over-expression of apelin in hypothalamus of mice that present over-activation of SNS associated to an increase in hepatic glucose production. Finally, we report that mice fed a high-fat diet present major alterations of hypothalamic apelin/ROS signaling, leading to activation of glycogenolysis. INNOVATION/CONCLUSION: These data bring compelling evidence that hypothalamic apelin is one master switch that participates in the onset of diabetes by directly acting on liver function. Our data support the idea that hypothalamic apelin is a new potential therapeutic target to treat diabetes.


Frontiers in Neuroanatomy | 2012

Hypothalamus-Olfactory System Crosstalk: Orexin A Immunostaining in Mice

Jean Gascuel; Aleth Lemoine; Caroline Rigault; Frédérique Datiche; Alexandre Benani; Luc Pénicaud; Laura López-Mascaraque

It is well known that olfaction influences food intake, and conversely, that an individual’s nutritional status modulates olfactory sensitivity. However, what is still poorly understood is the neuronal correlate of this relationship, as well as the connections between the olfactory bulb and the hypothalamus. The goal of this report is to analyze the relationship between the olfactory bulb and hypothalamus, focusing on orexin A immunostaining, a hypothalamic neuropeptide that is thought to play a role in states of sleep/wakefulness. Interestingly, orexin A has also been described as a food intake stimulator. Such an effect may be due in part to the stimulation of the olfactory bulbar pathway. In rats, orexin positive cells are concentrated strictly in the lateral hypothalamus, while their projections invade nearly the entire brain including the olfactory system. Therefore, orexin appears to be a good candidate to play a pivotal role in connecting olfactory and hypothalamic pathways. So far, orexin has been described in rats, however, there is still a lack of information concerning its expression in the brains of adult and developing mice. In this context, we revisited the orexin A pattern in adult and developing mice using immunohistological methods and confocal microscopy. Besides minor differences, orexin A immunostaining in mice shares many features with those observed in rats. In the olfactory bulb, even though there are few orexin projections, they reach all the different layers of the olfactory bulb. In contrast to the presence of orexin projections in the main olfactory bulb, almost none have been found in the accessory olfactory bulb. The developmental expression of orexin A supports the hypothesis that orexin expression only appears post-natally.

Collaboration


Dive into the Alexandre Benani's collaboration.

Top Co-Authors

Avatar

Luc Pénicaud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xavier Fioramonti

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Anne Lorsignol

Paul Sabatier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Yves Jouzeau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Mikaël Daouphars

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Galinier

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge