Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun-Yan Zhu is active.

Publication


Featured researches published by Jun-Yan Zhu.


computer vision and pattern recognition | 2017

Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola; Jun-Yan Zhu; Tinghui Zhou; Alexei A. Efros

We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Moreover, since the release of the pix2pix software associated with this paper, hundreds of twitter users have posted their own artistic experiments using our system. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without handengineering our loss functions either.


european conference on computer vision | 2016

Generative Visual Manipulation on the Natural Image Manifold

Jun-Yan Zhu; Philipp Krähenbühl; Eli Shechtman; Alexei A. Efros

Realistic image manipulation is challenging because it requires modifying the image appearance in a user-controlled way, while preserving the realism of the result. Unless the user has considerable artistic skill, it is easy to “fall off” the manifold of natural images while editing. In this paper, we propose to learn the natural image manifold directly from data using a generative adversarial neural network. We then define a class of image editing operations, and constrain their output to lie on that learned manifold at all times. The model automatically adjusts the output keeping all edits as realistic as possible. All our manipulations are expressed in terms of constrained optimization and are applied in near-real time. We evaluate our algorithm on the task of realistic photo manipulation of shape and color. The presented method can further be used for changing one image to look like the other, as well as generating novel imagery from scratch based on user’s scribbles.


Medical Image Analysis | 2014

Weakly supervised histopathology cancer image segmentation and classification

Yan Xu; Jun-Yan Zhu; Eric Chang; Maode Lai; Zhuowen Tu

Labeling a histopathology image as having cancerous regions or not is a critical task in cancer diagnosis; it is also clinically important to segment the cancer tissues and cluster them into various classes. Existing supervised approaches for image classification and segmentation require detailed manual annotations for the cancer pixels, which are time-consuming to obtain. In this paper, we propose a new learning method, multiple clustered instance learning (MCIL) (along the line of weakly supervised learning) for histopathology image segmentation. The proposed MCIL method simultaneously performs image-level classification (cancer vs. non-cancer image), medical image segmentation (cancer vs. non-cancer tissue), and patch-level clustering (different classes). We embed the clustering concept into the multiple instance learning (MIL) setting and derive a principled solution to performing the above three tasks in an integrated framework. In addition, we introduce contextual constraints as a prior for MCIL, which further reduces the ambiguity in MIL. Experimental results on histopathology colon cancer images and cytology images demonstrate the great advantage of MCIL over the competing methods.


computer vision and pattern recognition | 2014

MILCut: A Sweeping Line Multiple Instance Learning Paradigm for Interactive Image Segmentation

Jiajun Wu; Yibiao Zhao; Jun-Yan Zhu; Siwei Luo; Zhuowen Tu

Interactive segmentation, in which a user provides a bounding box to an object of interest for image segmentation, has been applied to a variety of applications in image editing, crowdsourcing, computer vision, and medical imaging. The challenge of this semi-automatic image segmentation task lies in dealing with the uncertainty of the foreground object within a bounding box. Here, we formulate the interactive segmentation problem as a multiple instance learning (MIL) task by generating positive bags from pixels of sweeping lines within a bounding box. We name this approach MILCut. We provide a justification to our formulation and develop an algorithm with significant performance and efficiency gain over existing state-of-the-art systems. Extensive experiments demonstrate the evident advantage of our approach.


computer vision and pattern recognition | 2012

Unsupervised object class discovery via saliency-guided multiple class learning

Jun-Yan Zhu; Jiajun Wu; Yichen Wei; Eric Chang; Zhuowen Tu

Discovering object classes from images in a fully unsupervised way is an intrinsically ambiguous task; saliency detection approaches however ease the burden on unsupervised learning. We develop an algorithm for simultaneously localizing objects and discovering object classes via bottom-up (saliency-guided) multiple class learning (bMCL), and make the following contributions: (1) saliency detection is adopted to convert unsupervised learning into multiple instance learning, formulated as bottom-up multiple class learning (bMCL); (2) we utilize the Discriminative EM (DiscEM) to solve our bMCL problem and show DiscEMs connection to the MIL-Boost method[34]; (3) localizing objects, discovering object classes, and training object detectors are performed simultaneously in an integrated framework; (4) significant improvements over the existing methods for multi-class object discovery are observed. In addition, we show single class localization as a special case in our bMCL framework and we also demonstrate the advantage of bMCL over purely data-driven saliency methods.


computer vision and pattern recognition | 2012

Multiple clustered instance learning for histopathology cancer image classification, segmentation and clustering

Yan Xu; Jun-Yan Zhu; Eric Chang; Zhuowen Tu

Cancer tissues in histopathology images exhibit abnormal patterns; it is of great clinical importance to label a histopathology image as having cancerous regions or not and perform the corresponding image segmentation. However, the detailed annotation of cancer cells is often an ambiguous and challenging task. In this paper, we propose a new learning method, multiple clustered instance learning (MCIL), to classify, segment and cluster cancer cells in colon histopathology images. The proposed MCIL method simultaneously performs image-level classification (cancer vs. non-cancer image), pixel-level segmentation (cancer vs. non-cancer tissue), and patch-level clustering (cancer subclasses). We embed the clustering concept into the multiple instance learning (MIL) setting and derive a principled solution to perform the above three tasks in an integrated framework. Experimental results demonstrate the efficiency and effectiveness of MCIL in analyzing colon cancers.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2015

Unsupervised Object Class Discovery via Saliency-Guided Multiple Class Learning

Jun-Yan Zhu; Jiajun Wu; Yan Xu; Eric Chang; Zhuowen Tu

Discovering object classes from images in a fully unsupervised way is an intrinsically ambiguous task; saliency detection approaches however ease the burden on unsupervised learning. We develop an algorithm for simultaneously localizing objects and discovering object classes via bottom-up (saliency-guided) multiple class learning (bMCL), and make the following contributions: (1) saliency detection is adopted to convert unsupervised learning into multiple instance learning, formulated as bottom-up multiple class learning (bMCL); (2) we utilize the Discriminative EM (DiscEM) to solve our bMCL problem and show DiscEMs connection to the MIL-Boost method[34]; (3) localizing objects, discovering object classes, and training object detectors are performed simultaneously in an integrated framework; (4) significant improvements over the existing methods for multi-class object discovery are observed. In addition, we show single class localization as a special case in our bMCL framework and we also demonstrate the advantage of bMCL over purely data-driven saliency methods.


european conference on computer vision | 2016

A 4D Light-Field Dataset and CNN Architectures for Material Recognition

Ting-Chun Wang; Jun-Yan Zhu; Ebi Hiroaki; Manmohan Chandraker; Alexei A. Efros; Ravi Ramamoorthi

We introduce a new light-field dataset of materials, and take advantage of the recent success of deep learning to perform material recognition on the 4D light-field. Our dataset contains 12 material categories, each with 100 images taken with a Lytro Illum, from which we extract about 30,000 patches in total. To the best of our knowledge, this is the first mid-size dataset for light-field images. Our main goal is to investigate whether the additional information in a light-field (such as multiple sub-aperture views and view-dependent reflectance effects) can aid material recognition. Since recognition networks have not been trained on 4D images before, we propose and compare several novel CNN architectures to train on light-field images. In our experiments, the best performing CNN architecture achieves a 7 % boost compared with 2D image classification (\(70\,\%\rightarrow 77\,\%\)). These results constitute important baselines that can spur further research in the use of CNNs for light-field applications. Upon publication, our dataset also enables other novel applications of light-fields, including object detection, image segmentation and view interpolation.


international conference on computer vision | 2015

Learning a Discriminative Model for the Perception of Realism in Composite Images

Jun-Yan Zhu; Philipp Krähenbühl; Eli Shechtman; Alexei A. Efros

What makes an image appear realistic? In this work, we are answering this question from a data-driven perspective by learning the perception of visual realism directly from large amounts of data. In particular, we train a Convolutional Neural Network (CNN) model that distinguishes natural photographs from automatically generated composite images. The model learns to predict visual realism of a scene in terms of color, lighting and texture compatibility, without any human annotations pertaining to it. Our model outperforms previous works that rely on hand-crafted heuristics, for the task of classifying realistic vs. unrealistic photos. Furthermore, we apply our learned model to compute optimal parameters of a compositing method, to maximize the visual realism score predicted by our CNN model. We demonstrate its advantage against existing methods via a human perception study.


ACM Transactions on Graphics | 2017

Light field video capture using a learning-based hybrid imaging system

Ting-Chun Wang; Jun-Yan Zhu; Nima Khademi Kalantari; Alexei A. Efros; Ravi Ramamoorthi

Light field cameras have many advantages over traditional cameras, as they allow the user to change various camera settings after capture. However, capturing light fields requires a huge bandwidth to record the data: a modern light field camera can only take three images per second. This prevents current consumer light field cameras from capturing light field videos. Temporal interpolation at such extreme scale (10x, from 3 fps to 30 fps) is infeasible as too much information will be entirely missing between adjacent frames. Instead, we develop a hybrid imaging system, adding another standard video camera to capture the temporal information. Given a 3 fps light field sequence and a standard 30 fps 2D video, our system can then generate a full light field video at 30 fps. We adopt a learning-based approach, which can be decomposed into two steps: spatio-temporal flow estimation and appearance estimation. The flow estimation propagates the angular information from the light field sequence to the 2D video, so we can warp input images to the target view. The appearance estimation then combines these warped images to output the final pixels. The whole process is trained end-to-end using convolutional neural networks. Experimental results demonstrate that our algorithm outperforms current video interpolation methods, enabling consumer light field videography, and making applications such as refocusing and parallax view generation achievable on videos for the first time.

Collaboration


Dive into the Jun-Yan Zhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhuowen Tu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phillip Isola

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ting-Chun Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Trevor Darrell

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Torralba

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge