Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexei V. Lobanov is active.

Publication


Featured researches published by Alexei V. Lobanov.


Nature | 2011

Genome sequencing reveals insights into physiology and longevity of the naked mole rat

Eun Bae Kim; Xiaodong Fang; Alexey A. Fushan; Zhiyong Huang; Alexei V. Lobanov; Lijuan Han; Stefano M. Marino; Xiaoqing Sun; Anton A. Turanov; Pengcheng Yang; Sun Hee Yim; Xiang Zhao; Marina V. Kasaikina; Nina Stoletzki; Chunfang Peng; Paz Polak; Zhiqiang Xiong; Adam Kiezun; Yabing Zhu; Yuanxin Chen; Gregory V. Kryukov; Qiang Zhang; Leonid Peshkin; Lan Yang; Roderick T. Bronson; Rochelle Buffenstein; Bo Wang; Changlei Han; Qiye Li; Li Chen

The naked mole rat (Heterocephalus glaber) is a strictly subterranean, extraordinarily long-lived eusocial mammal. Although it is the size of a mouse, its maximum lifespan exceeds 30 years, making this animal the longest-living rodent. Naked mole rats show negligible senescence, no age-related increase in mortality, and high fecundity until death. In addition to delayed ageing, they are resistant to both spontaneous cancer and experimentally induced tumorigenesis. Naked mole rats pose a challenge to the theories that link ageing, cancer and redox homeostasis. Although characterized by significant oxidative stress, the naked mole rat proteome does not show age-related susceptibility to oxidative damage or increased ubiquitination. Naked mole rats naturally reside in large colonies with a single breeding female, the ‘queen’, who suppresses the sexual maturity of her subordinates. They also live in full darkness, at low oxygen and high carbon dioxide concentrations, and are unable to sustain thermogenesis nor feel certain types of pain. Here we report the sequencing and analysis of the naked mole rat genome, which reveals unique genome features and molecular adaptations consistent with cancer resistance, poikilothermy, hairlessness and insensitivity to low oxygen, and altered visual function, circadian rythms and taste sensing. This information provides insights into the naked mole rat’s exceptional longevity and ability to live in hostile conditions, in the dark and at low oxygen. The extreme traits of the naked mole rat, together with the reported genome and transcriptome information, offer opportunities for understanding ageing and advancing other areas of biological and biomedical research.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics.

Christopher J. Gobler; Dianna L. Berry; Sonya T. Dyhrman; Steven W. Wilhelm; Asaf Salamov; Alexei V. Lobanov; Yan Zhang; Jackie L. Collier; Louie L. Wurch; Adam B. Kustka; Brian D. Dill; Manesh Shah; Nathan C. VerBerkmoes; Alan Kuo; Astrid Terry; Jasmyn Pangilinan; Erika Lindquist; Susan Lucas; Ian T. Paulsen; Theresa K. Hattenrath-Lehmann; Stephanie C. Talmage; Elyse A. Walker; Florian Koch; Amanda Burson; Maria Alejandra Marcoval; Ying Zhong Tang; Gary R. LeCleir; Kathryn J. Coyne; Gry Mine Berg; Erin M. Bertrand

Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress

Maxim V. Gerashchenko; Alexei V. Lobanov; Vadim N. Gladyshev

Information on unique and coordinated regulation of transcription and translation in response to stress is central to the understanding of cellular homeostasis. Here we used ribosome profiling coupled with next-generation sequencing to examine the interplay between transcription and translation under conditions of hydrogen peroxide treatment in Saccharomyces cerevisiae. Hydrogen peroxide treatment led to a massive and rapid increase in ribosome occupancy of short upstream ORFs, including those with non-AUG translational starts, and of the N-terminal regions of ORFs that preceded the transcriptional response. In addition, this treatment induced the synthesis of N-terminally extended proteins and elevated stop codon read-through and frameshift events. It also increased ribosome occupancy at the beginning of ORFs and potentially the duration of the elongation step. We identified proteins whose synthesis was regulated rapidly by hydrogen peroxide posttranscriptionally; however, for the majority of genes increased protein synthesis followed transcriptional regulation. These data define the landscape of genome-wide regulation of translation in response to hydrogen peroxide and suggest that potentiation (coregulation of the transcript level and translation) is a feature of oxidative stress.


PLOS ONE | 2012

Composition and Evolution of the Vertebrate and Mammalian Selenoproteomes

Marco Mariotti; Perry G. Ridge; Yan Zhang; Alexei V. Lobanov; Thomas H. Pringle; Roderic Guigó; Dolph L. Hatfield; Vadim N. Gladyshev

Background Selenium is an essential trace element in mammals due to its presence in proteins in the form of selenocysteine (Sec). Human genome codes for 25 Sec-containing protein genes, and mouse and rat genomes for 24. Methodology/Principal Findings We characterized the selenoproteomes of 44 sequenced vertebrates by applying gene prediction and phylogenetic reconstruction methods, supplemented with the analyses of gene structures, alternative splicing isoforms, untranslated regions, SECIS elements, and pseudogenes. In total, we detected 45 selenoprotein subfamilies. 28 of them were found in mammals, and 41 in bony fishes. We define the ancestral vertebrate (28 proteins) and mammalian (25 proteins) selenoproteomes, and describe how they evolved along lineages through gene duplication (20 events), gene loss (10 events) and replacement of Sec with cysteine (12 events). We show that an intronless selenophosphate synthetase 2 gene evolved in early mammals and replaced functionally the original multiexon gene in placental mammals, whereas both genes remain in marsupials. Mammalian thioredoxin reductase 1 and thioredoxin-glutathione reductase evolved from an ancestral glutaredoxin-domain containing enzyme, still present in fish. Selenoprotein V and GPx6 evolved specifically in placental mammals from duplications of SelW and GPx3, respectively, and GPx6 lost Sec several times independently. Bony fishes were characterized by duplications of several selenoprotein families (GPx1, GPx3, GPx4, Dio3, MsrB1, SelJ, SelO, SelT, SelU1, and SelW2). Finally, we report identification of new isoforms for several selenoproteins and describe unusually conserved selenoprotein pseudogenes. Conclusions/Significance This analysis represents the first comprehensive survey of the vertebrate and mammal selenoproteomes, and depicts their evolution along lineages. It also provides a wealth of information on these selenoproteins and their forms.


Cell Reports | 2014

Adaptations to a Subterranean Environment and Longevity Revealed by the Analysis of Mole Rat Genomes

Xiaodong Fang; Inge Seim; Zhiyong Huang; Maxim V. Gerashchenko; Zhiqiang Xiong; Anton A. Turanov; Yabing Zhu; Alexei V. Lobanov; Dingding Fan; Sun Hee Yim; Xiaoming Yao; Siming Ma; Lan Yang; Sang-Goo Lee; Eun Bae Kim; Roderick T. Bronson; Radim Šumbera; Rochelle Buffenstein; Xin Zhou; Anders Krogh; Thomas J. Park; Guojie Zhang; Jun Wang; Vadim N. Gladyshev

Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis) and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber). Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.


Journal of Biological Chemistry | 2016

Selenoprotein Gene Nomenclature

Brigelius Flohé Regina; Vadim N. Gladyshev; Elias S.J. Arnér; Marla J. Berry; Elspeth A. Bruford; Raymond F. Burk; Bradley A. Carlson; Sergi Castellano; Laurent Chavatte; Marcus Conrad; Paul R. Copeland; Alan M. Diamond; Donna M. Driscoll; A. Ferreiro; Leopold Flohé; Fiona R. Green; Roderic Guigó; Diane E. Handy; Dolph L. Hatfield; John E. Hesketh; Peter R. Hoffmann; Arne Holmgren; Robert J. Hondal; Michael T. Howard; Kaixun Huang; Hwa Young Kim; Ick Young Kim; Josef Köhrle; Alain Krol; Gregory V. Kryukov

The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.


Nucleic Acids Research | 2013

SECISearch3 and Seblastian: new tools for prediction of SECIS elements and selenoproteins.

Marco Mariotti; Alexei V. Lobanov; Roderic Guigó; Vadim N. Gladyshev

Selenoproteins are proteins containing an uncommon amino acid selenocysteine (Sec). Sec is inserted by a specific translational machinery that recognizes a stem-loop structure, the SECIS element, at the 3′ UTR of selenoprotein genes and recodes a UGA codon within the coding sequence. As UGA is normally a translational stop signal, selenoproteins are generally misannotated and designated tools have to be developed for this class of proteins. Here, we present two new computational methods for selenoprotein identification and analysis, which we provide publicly through the web servers at http://gladyshevlab.org/SelenoproteinPredictionServer or http://seblastian.crg.es. SECISearch3 replaces its predecessor SECISearch as a tool for prediction of eukaryotic SECIS elements. Seblastian is a new method for selenoprotein gene detection that uses SECISearch3 and then predicts selenoprotein sequences encoded upstream of SECIS elements. Seblastian is able to both identify known selenoproteins and predict new selenoproteins. By applying these tools to diverse eukaryotic genomes, we provide a ranked list of newly predicted selenoproteins together with their annotated cysteine-containing homologues. An analysis of a representative candidate belonging to the AhpC family shows how the use of Sec in this protein evolved in bacterial and eukaryotic lineages.


Aging Cell | 2015

Gene expression defines natural changes in mammalian lifespan

Alexey A. Fushan; Anton A. Turanov; Sang-Goo Lee; Eun Bae Kim; Alexei V. Lobanov; Sun Hee Yim; Rochelle Buffenstein; Sang Rae Lee; Kyu Tae Chang; Hwanseok Rhee; Jong So Kim; Kap Seok Yang; Vadim N. Gladyshev

Mammals differ more than 100‐fold in maximum lifespan, which can be altered in either direction during evolution, but the molecular basis for natural changes in longevity is not understood. Divergent evolution of mammals also led to extensive changes in gene expression within and between lineages. To understand the relationship between lifespan and variation in gene expression, we carried out RNA‐seq‐based gene expression analyses of liver, kidney, and brain of 33 diverse species of mammals. Our analysis uncovered parallel evolution of gene expression and lifespan, as well as the associated life‐history traits, and identified the processes and pathways involved. These findings provide direct insights into how nature reversibly adjusts lifespan and other traits during adaptive radiation of lineages.


Journal of Biological Chemistry | 2011

Reduced Utilization of Selenium by Naked Mole Rats Due to a Specific Defect in GPx1 Expression

Marina V. Kasaikina; Alexei V. Lobanov; Mikalai Yu. Malinouski; Byung Cheon Lee; Javier Seravalli; Dmitri E. Fomenko; Anton A. Turanov; Lydia Finney; Stefan Vogt; Thomas J. Park; Richard A. Miller; Dolph L. Hatfield; Vadim N. Gladyshev

Naked mole rat (MR) Heterocephalus glaber is a rodent model of delayed aging because of its unusually long life span (>28 years). It is also not known to develop cancer. In the current work, tissue imaging by x-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR liver and kidney, whereas MR and mouse brains had similar selenium levels. This effect was not explained by uniform selenium deficiency because methionine sulfoxide reductase activities were similar in mice and MR. However, glutathione peroxidase activity was an order of magnitude lower in MR liver and kidney than in mouse tissues. In addition, metabolic labeling of MR cells with 75Se revealed a loss of the abundant glutathione peroxidase 1 (GPx1) band, whereas other selenoproteins were preserved. To characterize the MR selenoproteome, we sequenced its liver transcriptome. Gene reconstruction revealed standard selenoprotein sequences except for GPx1, which had an early stop codon, and SelP, which had low selenocysteine content. When expressed in HEK 293 cells, MR GPx1 was present in low levels, and its expression could be rescued neither by removing the early stop codon nor by replacing its SECIS element. In addition, GPx1 mRNA was present in lower levels in MR liver than in mouse liver. To determine if GPx1 deficiency could account for the reduced selenium content, we analyzed GPx1 knock-out mice and found reduced selenium levels in their livers and kidneys. Thus, MR is characterized by the reduced utilization of selenium due to a specific defect in GPx1 expression.


Aging Cell | 2015

Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae

Alaattin Kaya; Alexei V. Lobanov; Vadim N. Gladyshev

The concept that mutations cause aging phenotypes could not be directly tested previously due to inability to identify age‐related mutations in somatic cells and determine their impact on organismal aging. Here, we subjected Saccharomyces cerevisiae to multiple rounds of replicative aging and assessed de novo mutations in daughters of mothers of different age. Mutations did increase with age, but their low numbers, < 1 per lifespan, excluded their causal role in aging. Structural genome changes also had no role. A mutant lacking thiol peroxidases had the mutation rate well above that of wild‐type cells, but this did not correspond to the aging pattern, as old wild‐type cells with few or no mutations were dying, whereas young mutant cells with many more mutations continued dividing. In addition, wild‐type cells lost mitochondrial DNA during aging, whereas shorter‐lived mutant cells preserved it, excluding a causal role of mitochondrial mutations in aging. Thus, DNA mutations do not cause aging in yeast. These findings may apply to other damage types, suggesting a causal role of cumulative damage, as opposed to individual damage types, in organismal aging.

Collaboration


Dive into the Alexei V. Lobanov's collaboration.

Top Co-Authors

Avatar

Vadim N. Gladyshev

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Anton A. Turanov

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Dolph L. Hatfield

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sun Hee Yim

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang-Goo Lee

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rochelle Buffenstein

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Park

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge