Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anton A. Turanov is active.

Publication


Featured researches published by Anton A. Turanov.


Nature | 2011

Genome sequencing reveals insights into physiology and longevity of the naked mole rat

Eun Bae Kim; Xiaodong Fang; Alexey A. Fushan; Zhiyong Huang; Alexei V. Lobanov; Lijuan Han; Stefano M. Marino; Xiaoqing Sun; Anton A. Turanov; Pengcheng Yang; Sun Hee Yim; Xiang Zhao; Marina V. Kasaikina; Nina Stoletzki; Chunfang Peng; Paz Polak; Zhiqiang Xiong; Adam Kiezun; Yabing Zhu; Yuanxin Chen; Gregory V. Kryukov; Qiang Zhang; Leonid Peshkin; Lan Yang; Roderick T. Bronson; Rochelle Buffenstein; Bo Wang; Changlei Han; Qiye Li; Li Chen

The naked mole rat (Heterocephalus glaber) is a strictly subterranean, extraordinarily long-lived eusocial mammal. Although it is the size of a mouse, its maximum lifespan exceeds 30 years, making this animal the longest-living rodent. Naked mole rats show negligible senescence, no age-related increase in mortality, and high fecundity until death. In addition to delayed ageing, they are resistant to both spontaneous cancer and experimentally induced tumorigenesis. Naked mole rats pose a challenge to the theories that link ageing, cancer and redox homeostasis. Although characterized by significant oxidative stress, the naked mole rat proteome does not show age-related susceptibility to oxidative damage or increased ubiquitination. Naked mole rats naturally reside in large colonies with a single breeding female, the ‘queen’, who suppresses the sexual maturity of her subordinates. They also live in full darkness, at low oxygen and high carbon dioxide concentrations, and are unable to sustain thermogenesis nor feel certain types of pain. Here we report the sequencing and analysis of the naked mole rat genome, which reveals unique genome features and molecular adaptations consistent with cancer resistance, poikilothermy, hairlessness and insensitivity to low oxygen, and altered visual function, circadian rythms and taste sensing. This information provides insights into the naked mole rat’s exceptional longevity and ability to live in hostile conditions, in the dark and at low oxygen. The extreme traits of the naked mole rat, together with the reported genome and transcriptome information, offer opportunities for understanding ageing and advancing other areas of biological and biomedical research.


Nature Communications | 2013

Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii

Inge Seim; Xiaodong Fang; Zhiqiang Xiong; Alexey V. Lobanov; Zhiyong Huang; Siming Ma; Yue Feng; Anton A. Turanov; Yabing Zhu; Tobias L. Lenz; Maxim V. Gerashchenko; Dingding Fan; Sun Hee Yim; Xiaoming Yao; Daniel D. Jordan; Yingqi Xiong; Yong Xin Ma; Andrey N. Lyapunov; Guanxing Chen; Oksana I. Kulakova; Yudong Sun; Sang-Goo Lee; Roderick T. Bronson; Alexey Moskalev; Shamil R. Sunyaev; Guojie Zhang; Anders Krogh; Jun Wang; Vadim N. Gladyshev

Bats account for one-fifth of mammalian species, are the only mammals with powered flight, and are among the few animals that echolocate. The insect-eating Brandt’s bat (Myotis brandtii) is the longest-lived bat species known to date (lifespan exceeds 40 years) and, at 4–8 g adult body weight, is the most extreme mammal with regard to disparity between body mass and longevity. Here we report sequencing and analysis of the Brandt’s bat genome and transcriptome, which suggest adaptations consistent with echolocation and hibernation, as well as altered metabolism, reproduction and visual function. Unique sequence changes in growth hormone and insulin-like growth factor 1 receptors are also observed. The data suggest that an altered growth hormone/insulin-like growth factor 1 axis, which may be common to other long-lived bat species, together with adaptations such as hibernation and low reproductive rate, contribute to the exceptional lifespan of the Brandt’s bat.


Science | 2009

Genetic code supports targeted insertion of two amino acids by one codon

Anton A. Turanov; Alexey V. Lobanov; Dmitri E. Fomenko; Hilary G. Morrison; Mitchell L. Sogin; Lawrence A. Klobutcher; Dolph L. Hatfield; Vadim N. Gladyshev

Strict one-to-one correspondence between codons and amino acids is thought to be an essential feature of the genetic code. However, we report that one codon can code for two different amino acids with the choice of the inserted amino acid determined by a specific 3′ untranslated region structure and location of the dual-function codon within the messenger RNA (mRNA). We found that the codon UGA specifies insertion of selenocysteine and cysteine in the ciliate Euplotes crassus, that the dual use of this codon can occur even within the same gene, and that the structural arrangements of Euplotes mRNA preserve location-dependent dual function of UGA when expressed in mammalian cells. Thus, the genetic code supports the use of one codon to code for multiple amino acids.


Journal of Biological Chemistry | 2006

Characterization of Alternative Cytosolic Forms and Cellular Targets of Mouse Mitochondrial Thioredoxin Reductase

Anton A. Turanov; Dan Su; Vadim N. Gladyshev

Thioredoxin reductase (TR) and thioredoxin (Trx) define a major cellular redox system that maintains cysteine residues in numerous proteins in the reduced state. Both cytosolic (TR1 and Trx1) and mitochondrial (TR3 and Trx2) enzymes are essential in mammals, but the function of the mitochondrial system is less understood. In this study, we characterized subcellular localization of three TR3 forms that are generated by alternative first exon splicing and that differ in their N-terminal sequences. Only one of these forms resides in mitochondria, whereas the two other isoforms are cytosolic. Consistent with this finding, TR3 did not have catalytic preferences for mitochondrial Trx2 versus cytosolic Trx1, both of which could serve as TR3 substrates. Similarly, TR1 was equally active with Trx1, Trx2, or a bacterial Trx. We generated recombinant selenoprotein forms of TR1 and TR3 and found that these enzymes were inhibited by zinc, but not by calcium or cobalt ions. We further developed a proteomic method for identification of targets of TRs in mammalian cells utilizing affinity columns containing recombinant TR3 forms differing in C-terminal sequences. Using this procedure, we found that Trx1 was the major target of TR3 in both rat and mouse liver cytosol. The truncated form of TR3 lacking selenocysteine was particularly efficient in binding Trx1, consistent with the previously observed role of truncated TR1 in apoptosis. Overall, these data establish that the function of TR3 is not limited to its role in Trx2 reduction.


Advances in Nutrition | 2011

Biosynthesis of Selenocysteine, the 21st Amino Acid in the Genetic Code, and a Novel Pathway for Cysteine Biosynthesis

Anton A. Turanov; Xue-Ming Xu; Bradley A. Carlson; Min-Hyuk Yoo; Vadim N. Gladyshev; Dolph L. Hatfield

The biosynthetic pathway for selenocysteine (Sec), the 21st amino acid in the genetic code whose codeword is UGA, was recently determined in eukaryotes and archaea. Sec tRNA, designated tRNA([Ser]Sec), is initially aminoacylated with serine by seryl-tRNA synthetase and the resulting seryl moiety is converted to phosphoserine by O-phosphoseryl-tRNA kinase to form O-phosphoseryl-tRNA([Ser]Sec). Sec synthase (SecS) then uses O-phosphoseryl-tRNA([Ser]Sec) and the active donor of selenium, selenophosphate, to form Sec-tRNA([Ser]Sec). Selenophosphate is synthesized from selenide and ATP by selenophosphate synthetase 2 (SPS2). Sec was the last protein amino acid in eukaryotes whose biosynthesis had not been established and the only known amino acid in eukaryotes whose biosynthesis occurs on its tRNA. Interestingly, sulfide can replace selenide to form thiophosphate in the SPS2-catalyzed reaction that can then react with O-phosphoseryl-tRNA([Ser]Sec) in the presence of SecS to form cysteine-(Cys-)tRNA([Ser]Sec). This novel pathway of Cys biosynthesis results in Cys being decoded by UGA and replacing Sec in normally selenium-containing proteins (selenoproteins). The selenoprotein, thioredoxin reductase 1 (TR1), was isolated from cells in culture and from mouse liver for analysis of Cys/Sec replacement by MS. The level of Cys/Sec replacement in TR1 was proportional to the level of selenium in the diet of the mice. Elucidation of the biosynthesis of Sec and Sec/Cys replacement provides novel ways of regulating selenoprotein functions and ultimately better understanding of the biological roles of dietary selenium.


Journal of Biological Chemistry | 2008

Platyhelminth Mitochondrial and Cytosolic Redox Homeostasis Is Controlled by a Single Thioredoxin Glutathione Reductase and Dependent on Selenium and Glutathione

Mariana Bonilla; Ana Denicola; Sergey V. Novoselov; Anton A. Turanov; Anna V. Protasio; Darwin Izmendi; Vadim N. Gladyshev; Gustavo Salinas

Platyhelminth parasites are a major health problem in developing countries. In contrast to their mammalian hosts, platyhelminth thiol-disulfide redox homeostasis relies on linked thioredoxin-glutathione systems, which are fully dependent on thioredoxin-glutathione reductase (TGR), a promising drug target. TGR is a homodimeric enzyme comprising a glutaredoxin domain and thioredoxin reductase (TR) domains with a C-terminal redox center containing selenocysteine (Sec). In this study, we demonstrate the existence of functional linked thioredoxin-glutathione systems in the cytosolic and mitochondrial compartments of Echinococcus granulosus, the platyhelminth responsible for hydatid disease. The glutathione reductase (GR) activity of TGR exhibited hysteretic behavior regulated by the [GSSG]/[GSH] ratio. This behavior was associated with glutathionylation by GSSG and abolished by deglutathionylation. The Km and kcat values for mitochondrial and cytosolic thioredoxins (9.5 μm and 131 s–1, 34 μm and 197 s–1, respectively) were higher than those reported for mammalian TRs. Analysis of TGR mutants revealed that the glutaredoxin domain is required for the GR activity but did not affect the TR activity. In contrast, both GR and TR activities were dependent on the Sec-containing redox center. The activity loss caused by the Sec-to-Cys mutation could be partially compensated by a Cys-to-Sec mutation of the neighboring residue, indicating that Sec can support catalysis at this alternative position. Consistent with the essential role of TGR in redox control, 2.5 μm auranofin, a known TGR inhibitor, killed larval worms in vitro. These studies establish the selenium- and glutathione-dependent regulation of cytosolic and mitochondrial redox homeostasis through a single TGR enzyme in platyhelminths.


Cell Reports | 2014

Adaptations to a Subterranean Environment and Longevity Revealed by the Analysis of Mole Rat Genomes

Xiaodong Fang; Inge Seim; Zhiyong Huang; Maxim V. Gerashchenko; Zhiqiang Xiong; Anton A. Turanov; Yabing Zhu; Alexei V. Lobanov; Dingding Fan; Sun Hee Yim; Xiaoming Yao; Siming Ma; Lan Yang; Sang-Goo Lee; Eun Bae Kim; Roderick T. Bronson; Radim Šumbera; Rochelle Buffenstein; Xin Zhou; Anders Krogh; Thomas J. Park; Guojie Zhang; Jun Wang; Vadim N. Gladyshev

Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis) and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber). Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Targeted insertion of cysteine by decoding UGA codons with mammalian selenocysteine machinery

Xue Ming Xu; Anton A. Turanov; Bradley A. Carlson; Min Hyuk Yoo; Robert A. Everley; Renu Nandakumar; Irina Sorokina; Steven P. Gygi; Vadim N. Gladyshev; Dolph L. Hatfield

Cysteine (Cys) is inserted into proteins in response to UGC and UGU codons. Herein, we show that supplementation of mammalian cells with thiophosphate led to targeted insertion of Cys at the UGA codon of thioredoxin reductase 1 (TR1). This Cys was synthesized by selenocysteine (Sec) synthase on tRNA[Ser]Sec and its insertion was dependent on the Sec insertion sequence element in the 3′UTR of TR1 mRNA. The substrate for this reaction, thiophosphate, was synthesized by selenophosphate synthetase 2 from ATP and sulfide and reacted with phosphoseryl-tRNA[Ser]Sec to generate Cys-tRNA[Ser]Sec. Cys was inserted in vivo at UGA codons in natural mammalian TRs, and this process was regulated by dietary selenium and availability of thiophosphate. Cys occurred at 10% of the Sec levels in liver TR1 of mice maintained on a diet with normal amounts of selenium and at 50% in liver TR1 of mice maintained on a selenium deficient diet. These data reveal a novel Sec machinery-based mechanism for biosynthesis and insertion of Cys into protein at UGA codons and suggest new biological functions for thiophosphate and sulfide in mammals.


Aging Cell | 2015

Gene expression defines natural changes in mammalian lifespan

Alexey A. Fushan; Anton A. Turanov; Sang-Goo Lee; Eun Bae Kim; Alexei V. Lobanov; Sun Hee Yim; Rochelle Buffenstein; Sang Rae Lee; Kyu Tae Chang; Hwanseok Rhee; Jong So Kim; Kap Seok Yang; Vadim N. Gladyshev

Mammals differ more than 100‐fold in maximum lifespan, which can be altered in either direction during evolution, but the molecular basis for natural changes in longevity is not understood. Divergent evolution of mammals also led to extensive changes in gene expression within and between lineages. To understand the relationship between lifespan and variation in gene expression, we carried out RNA‐seq‐based gene expression analyses of liver, kidney, and brain of 33 diverse species of mammals. Our analysis uncovered parallel evolution of gene expression and lifespan, as well as the associated life‐history traits, and identified the processes and pathways involved. These findings provide direct insights into how nature reversibly adjusts lifespan and other traits during adaptive radiation of lineages.


Critical Reviews in Biochemistry and Molecular Biology | 2010

Dual functions of codons in the genetic code

Alexey V. Lobanov; Anton A. Turanov; Dolph L. Hatfield; Vadim N. Gladyshev

The discovery of the genetic code provided one of the basic foundations of modern molecular biology. Most organisms use the same genetic language, but there are also well-documented variations representing codon reassignments within specific groups of organisms (such as ciliates and yeast) or organelles (such as plastids and mitochondria). In addition, duality in codon function is known in the use of AUG in translation initiation and methionine insertion into internal protein positions as well as in the case of selenocysteine and pyrrolysine insertion (encoded by UGA and UAG, respectively) in competition with translation termination. Ambiguous meaning of CUG in coding for serine and leucine is also known. However, a recent study revealed that codons in any position within the open reading frame can serve a dual function and that a change in codon meaning can be achieved by availability of a specific type of RNA stem-loop structure in the 3′-untranslated region. Thus, duality of codon function is a more widely used feature of the genetic code than previously known, and this observation raises the possibility that additional recoding events and additional novel features have evolved in the genetic code.

Collaboration


Dive into the Anton A. Turanov's collaboration.

Top Co-Authors

Avatar

Vadim N. Gladyshev

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Dolph L. Hatfield

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bradley A. Carlson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexei V. Lobanov

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Sun Hee Yim

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Alexey V. Lobanov

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min-Hyuk Yoo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge