Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexis D. Ostrowski is active.

Publication


Featured researches published by Alexis D. Ostrowski.


Nature Nanotechnology | 2014

Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging

Daniel J. Gargas; Emory M. Chan; Alexis D. Ostrowski; Shaul Aloni; M. Virginia P. Altoe; Edward S. Barnard; Babak Sanii; Jeffrey J. Urban; Delia J. Milliron; Bruce E. Cohen; P. James Schuck

Imaging at the single-molecule level reveals heterogeneities that are lost in ensemble imaging experiments, but an ongoing challenge is the development of luminescent probes with the photostability, brightness and continuous emission necessary for single-molecule microscopy. Lanthanide-doped upconverting nanoparticles overcome problems of photostability and continuous emission and their upconverted emission can be excited with near-infrared light at powers orders of magnitude lower than those required for conventional multiphoton probes. However, the brightness of upconverting nanoparticles has been limited by open questions about energy transfer and relaxation within individual nanocrystals and unavoidable tradeoffs between brightness and size. Here, we develop upconverting nanoparticles under 10 nm in diameter that are over an order of magnitude brighter under single-particle imaging conditions than existing compositions, allowing us to visualize single upconverting nanoparticles as small (d = 4.8 nm) as fluorescent proteins. We use advanced single-particle characterization and theoretical modelling to find that surface effects become critical at diameters under 20 nm and that the fluences used in single-molecule imaging change the dominant determinants of nanocrystal brightness. These results demonstrate that factors known to increase brightness in bulk experiments lose importance at higher excitation powers and that, paradoxically, the brightest probes under single-molecule excitation are barely luminescent at the ensemble level.


Nano Letters | 2012

Combinatorial Discovery of Lanthanide-Doped Nanocrystals with Spectrally Pure Upconverted Emission

Emory M. Chan; Gang Han; Joshua D. Goldberg; Daniel J. Gargas; Alexis D. Ostrowski; P. James Schuck; Bruce E. Cohen; Delia J. Milliron

Nanoparticles doped with lanthanide ions exhibit stable and visible luminescence under near-infrared excitation via a process known as upconversion, enabling long-duration, low-background biological imaging. However, the complex, overlapping emission spectra of lanthanide ions can hinder the quantitative imaging of samples labeled with multiple upconverting probes. Here, we use combinatorial screening of multiply doped NaYF(4) nanocrystals to identify a series of doubly and triply doped upconverting nanoparticles that exhibit narrow, spectrally pure emission spectra at various visible wavelengths. We then developed a comprehensive kinetic model validated by our extensive experimental data set. Applying this model, we elucidated the energy transfer mechanisms giving rise to spectrally pure emission. These mechanisms suggest design rules for electronic level structures that yield robust color tuning in lanthanide-doped upconverting nanoparticles. The resulting materials will be useful for background-free multicolor imaging and tracking of biological processes.


Journal of the American Chemical Society | 2012

Quantum Dot Photoluminescence Quenching by Cr(III) Complexes. Photosensitized Reactions and Evidence for a FRET Mechanism

Peter T. Burks; Alexis D. Ostrowski; Alexander Mikhailovsky; Emory M. Chan; Paul S. Wagenknecht; Peter C. Ford

Reported are quantitative studies of the energy transfer from water-soluble CdSe/ZnS and CdSeS/ZnS core/shell quantum dots (QDs) to the Cr(III) complexes trans-Cr(N(4))(X)(2)(+) (N(4) is a tetraazamacrocycle ligand, X(-) is CN(-), Cl(-), or ONO(-)) in aqueous solution. Variation of N(4), of X(-), and of the QD size and composition allows one to probe the relationship between the emission/absorption overlap integral parameter and the efficiency of the quenching of the QD photoluminescence (PL) by the chromium(III) complexes. Steady-state studies of the QD PL in the presence of different concentrations of trans-Cr(N(4))(X)(2)(+) indicate a clear correlation between quenching efficiency and the overlap integral largely consistent with the predicted behavior of a Förster resonance energy transfer (FRET)-type mechanism. PL lifetimes show analogous correlations, and these results demonstrate that spectral overlap is an important consideration when designing supramolecular systems that incorporate QDs as photosensitizers. In the latter context, we extend earlier studies demonstrating that the water-soluble CdSe/ZnS and CdSeS/ZnS QDs photosensitize nitric oxide release from the trans-Cr(cyclam)(ONO)(2)(+) cation (cyclam = 1,4,8,11-tetraazacyclotetradecane) and report the efficiency (quantum yield) for this process. An improved synthesis of ternary CdSeS core/shell QDs is also described.


ACS Applied Materials & Interfaces | 2015

Light-Responsive Iron(III)–Polysaccharide Coordination Hydrogels for Controlled Delivery

Giuseppe E. Giammanco; Christopher T. Sosnofsky; Alexis D. Ostrowski

Visible-light responsive gels were prepared from two plant-origin polyuronic acids (PUAs), alginate and pectate, coordinated to Fe(III) ions. Comparative quantitative studies of the photochemistry of these systems revealed unexpected differences in the photoreactivity of the materials, depending on the polysaccharide and its composition. The roles that different functional groups play on the photochemistry of these biomolecules were also examined. Mannuronic-rich alginates were more photoreactive than guluronic acid-rich alginate and than pectate. The microstructure of alginates with different mannuronate-to-guluronate ratios changed with polysaccharide composition. This influenced the gel morphology and the photoreactivity. Coordination hydrogel beads were prepared from both Fe-alginate and Fe-pectate. The beads were stable carriers of molecules as diverse as the dye Congo Red, the vitamin folic acid, and the antibiotic chloramphenicol. The photoreactivity of the hydrogel beads mirrored the photoreactivity of the polysaccharides in solution, where beads prepared with alginate released their cargo faster than beads prepared with pectate. These results indicate important structure-function relationships in these systems and create guidelines for the design of biocompatible polysaccharide-based materials where photoreactivity and controlled release can be tuned on the basis of the type of polysaccharide used and the metal coordination environment.


Journal of Medicinal Chemistry | 2010

Nitric Oxide Photogeneration from trans-Cr(cyclam)(ONO)2+ in a Reducing Environment. Activation of Soluble Guanylyl Cyclase and Arterial Vasorelaxation

Alexis D. Ostrowski; Sherine J. Deakin; Bilal Azhar; Thomas W. Miller; Nestor Franco; Melisa M. Cherney; Andrea J. Lee; Judith N. Burstyn; Jon M. Fukuto; Ian L. Megson; Peter C. Ford

The chromium(III) nitrito complex trans-Cr(cyclam)(ONO)(2)(+) (1) is a very promising photochemical precursor for nitric oxide delivery to physiological targets. Here, we demonstrate that visible wavelength excitation of 1 in solutions containing thiol reductants such as the biological antioxidant glutathione (GSH) leads to permanent reaction even under anaerobic conditions, resulting in high quantum yield NO release. The nitric oxide formed under such conditions is sufficient, even at muM concentrations of 1 and using a low-intensity light source, to activate the enzyme soluble guanylyl cyclase (sGC). We also demonstrate that photolysis of 1 in the nM concentration range with a portable blue LED leads to vasorelaxation of porcine coronary arterial rings, a process also attributed to the NO activation of sGC.


ACS Nano | 2014

Plasmonic Nanocrystal Solar Cells Utilizing Strongly Confined Radiation

Natalia Kholmicheva; Pavel Moroz; Upendra Rijal; Ebin Bastola; Prakash Uprety; Geethika Liyanage; Anton O. Razgoniaev; Alexis D. Ostrowski; Mikhail Zamkov

The ability of metal nanoparticles to concentrate light via the plasmon resonance represents a unique opportunity for funneling the solar energy in photovoltaic devices. The absorption enhancement in plasmonic solar cells is predicted to be particularly prominent when the size of metal features falls below 20 nm, causing the strong confinement of radiation modes. Unfortunately, the ultrashort lifetime of such near-field radiation makes harvesting the plasmon energy in small-diameter nanoparticles a challenging task. Here, we develop plasmonic solar cells that harness the near-field emission of 5 nm Au nanoparticles by transferring the plasmon energy to band gap transitions of PbS semiconductor nanocrystals. The interfaces of Au and PbS domains were designed to support a rapid energy transfer at rates that outpace the thermal dephasing of plasmon modes. We demonstrate that central to the device operation is the inorganic passivation of Au nanoparticles with a wide gap semiconductor, which reduces carrier scattering and simultaneously improves the stability of heat-prone plasmonic films. The contribution of the Au near-field emission toward the charge carrier generation was manifested through the observation of an enhanced short circuit current and improved power conversion efficiency of mixed (Au, PbS) solar cells, as measured relative to PbS-only devices.


ACS Applied Materials & Interfaces | 2016

Photoresponsive Polysaccharide-Based Hydrogels with Tunable Mechanical Properties for Cartilage Tissue Engineering

Giuseppe E. Giammanco; Bita Carrion; Rhima M. Coleman; Alexis D. Ostrowski

Photoresponsive hydrogels were obtained by coordination of alginate-acrylamide hybrid gels (AlgAam) with ferric ions. The photochemistry of Fe(III)-alginate was used to tune the chemical composition, mechanical properties, and microstructure of the materials upon visible light irradiation. The photochemical treatment also induced changes in the swelling properties and transport mechanism in the gels due to the changes in material composition and microstructure. The AlgAam gels were biocompatible and could easily be dried and rehydrated with no change in mechanical properties. These gels showed promise as scaffolds for cartilage tissue engineering, where the photochemical treatment could be used to tune the properties of the material and ultimately change the growth and extracellular matrix production of chondrogenic cells. ATDC5 cells cultured on the hydrogels showed a greater than 2-fold increase in the production of sulfated glycosaminoglycans (sGAG) in the gels irradiated for 90 min compared to the dark controls. Our method provides a simple photochemical tool to postsynthetically control and adjust the chemical and mechanical environment in these gels, as well as the pore microstructure and transport properties. By changing these properties, we could easily access different levels of performance of these materials as substrates for tissue engineering.


Structure and Bonding | 2014

Photo-Controlled Release of NO and CO with Inorganic and Organometallic Complexes

Agustin E. Pierri; Dayana A. Muizzi; Alexis D. Ostrowski; Peter C. Ford

The photochemical delivery of bioactive small molecules to physiological targets provides the opportunity to control the location, timing, and dosage of such delivery. We will discuss recent developments of the synthesis and studies of various metal complexes designed for targeted release of the bioregulatory diatomics nitric oxide and carbon monoxide. Of considerable interest are those systems where the NO or CO precursor and/or the photochemical product is luminescent such that imaging techniques allow one to identify the release location.


ACS Applied Materials & Interfaces | 2018

Generating Photonastic Work from Irradiated Dyes in Electrospun Nanofibrous Polymer Mats

Maksim Y. Livshits; Anton O. Razgoniaev; Roberto C. Arbulu; Jisoo Shin; Brad J. McCullough; Yang Qin; Alexis D. Ostrowski; Jeffrey J. Rack

For solar-driven macroscopic motions, we assert that there is a local heating that facilitates large-scale deformations in anisotropic morphologic materials caused by thermal gradients. This report specifically identifies the fate of heat generation in photonastic materials and demonstrates how heat can perform work following excitation of a nonisomerizing dye. Utilizing the electrospinning technique, we have created a series of anisotropic nanofibrous polymer mats that comprise nonisomerizing dyes. Polymers are chosen because of their relative glass transition temperatures, elastic moduli, and melting temperatures. Light irradiation of these polymer mats with an excitation wavelength matching the absorption characteristics of the dye leads to macroscopic deformation of the mat. Analysis of still images extracted from digital videos provides plots of angular displacement vs power. The data were analyzed in terms of a photothermal model. Analyses of scanning electron microscopy micrographs for all samples are consistent to local melting in low Tg polymers and softening in high Tg polymers. Dynamic mechanical analysis allowed for quantification of the modulus change under a given light fluence. We employ these data to calculate a energy conversion efficiency. These efficiencies for the polymer mats are compared to other nonmuscular systems, including a few natural, biological samples.


Inorganic Chemistry | 2017

Mössbauer Spectroscopic Characterization of Iron(III)–Polysaccharide Coordination Complexes: Photochemistry, Biological, and Photoresponsive Materials Implications

H. Auerbach; Giuseppe E. Giammanco; Volker Schünemann; Alexis D. Ostrowski; Carl J. Carrano

While polycarboxylates and hydroxyl-acid complexes have long been known to be photoactive, simple carboxylate complexes which lack a significant LMCT band are not typically strongly photoactive. Hence, it was somewhat surprising that a series of reports demonstrated that materials synthesized from iron(III) and polysaccharides such as alginate (poly[guluronan-co-mannuronan]) or pectate (poly[galacturonan]) formed photoresponsive materials that convert from hydrogels to sols under the influence of visible light. These materials have numerous potential applications in areas such as photopatternable materials, materials for controlled drug delivery, and tissue engineering. Despite the near-identity of the functional units in the polysaccharide ligands, the reactivity of iron(III) hydrogels can depend on the configuration of some chiral centers in the sugar units and in the case of alginate the guluronate to mannuronate block composition, as well as pH. Here, using temperature- and field-dependent transmission Mössbauer spectroscopy, we show that the dominant iron compound detected for both the alginate and pectate gels displays features typical of a polymeric (Fe3+O6) system. The Mössbauer spectra of such systems are strongly dependent on temperature, field, size, and crystallinity, indicative of superparamagnetic relaxation of magnetically ordered nanoparticles. Pectate and alginate hydrogels differ in the size distribution of the iron oxyhydroxy nanoparticles, suggesting that in general smaller nanoparticles are more reactive. Potential biological implications of these results are also discussed.

Collaboration


Dive into the Alexis D. Ostrowski's collaboration.

Top Co-Authors

Avatar

Peter C. Ford

University of California

View shared research outputs
Top Co-Authors

Avatar

Anton O. Razgoniaev

Bowling Green State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Delia J. Milliron

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Emory M. Chan

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. James Schuck

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bruce E. Cohen

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Giuseppe E. Giammanco

Bowling Green State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexei V. Iretskii

Lake Superior State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge