Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexis Kaushansky is active.

Publication


Featured researches published by Alexis Kaushansky.


Journal of Clinical Investigation | 2012

Complete Plasmodium falciparum liver-stage development in liver-chimeric mice

Ashley M. Vaughan; Sebastian A. Mikolajczak; Elizabeth M. Wilson; Markus Grompe; Alexis Kaushansky; Nelly Camargo; John Bial; Alexander Ploss; Stefan H. I. Kappe

Plasmodium falciparum, which causes the most lethal form of human malaria, replicates in the host liver during the initial stage of infection. However, in vivo malaria liver-stage (LS) studies in humans are virtually impossible, and in vitro models of LS development do not reconstitute relevant parasite growth conditions. To overcome these obstacles, we have adopted a robust mouse model for the study of P. falciparum LS in vivo: the immunocompromised and fumarylacetoacetate hydrolase-deficient mouse (Fah-/-, Rag2-/-, Il2rg-/-, termed the FRG mouse) engrafted with human hepatocytes (FRG huHep). FRG huHep mice supported vigorous, quantifiable P. falciparum LS development that culminated in complete maturation of LS at approximately 7 days after infection, providing a relevant model for LS development in humans. The infections allowed observations of previously unknown expression of proteins in LS, including P. falciparum translocon of exported proteins 150 (PTEX150) and exported protein-2 (EXP-2), components of a known parasite protein export machinery. LS schizonts exhibited exoerythrocytic merozoite formation and merosome release. Furthermore, FRG mice backcrossed to the NOD background and repopulated with huHeps and human red blood cells supported reproducible transition from LS infection to blood-stage infection. Thus, these mice constitute reliable models to study human LS directly in vivo and demonstrate utility for studies of LS-to-blood-stage transition of a human malaria parasite.


Infection and Immunity | 2014

Model for In Vivo Assessment of Humoral Protection against Malaria Sporozoite Challenge by Passive Transfer of Monoclonal Antibodies and Immune Serum

Brandon K. Sack; Jessica L. Miller; Ashley M. Vaughan; Alyse N. Douglass; Alexis Kaushansky; Sebastian A. Mikolajczak; Alida Coppi; Gloria González-Aseguinolaza; Moriya Tsuji; Fidel Zavala; Photini Sinnis; Stefan H. I. Kappe

ABSTRACT Evidence from clinical trials of malaria vaccine candidates suggests that both cell-mediated and humoral immunity to pre-erythrocytic parasite stages can provide protection against infection. Novel pre-erythrocytic antibody (Ab) targets could be key to improving vaccine formulations, which are currently based on targeting antigens such as the circumsporozoite protein (CSP). However, methods to assess the effects of sporozoite-specific Abs on pre-erythrocytic infection in vivo remain underdeveloped. Here, we combined passive transfer of monoclonal Abs (MAbs) or immune serum with a luciferase-expressing Plasmodium yoelii sporozoite challenge to assess Ab-mediated inhibition of liver infection in mice. Passive transfer of a P. yoelii CSP MAb showed inhibition of liver infection when mice were challenged with sporozoites either intravenously or by infectious mosquito bite. However, inhibition was most potent for the mosquito bite challenge, leading to a more significant reduction of liver-stage burden and even a lack of progression to blood-stage parasitemia. This suggests that Abs provide effective protection against a natural infection. Inhibition of liver infection was also achieved by passive transfer of immune serum from whole-parasite-immunized mice. Furthermore, we demonstrated that passive transfer of a MAb against P. falciparum CSP inhibited liver-stage infection in a humanized mouse/P. falciparum challenge model. Together, these models constitute unique and sensitive in vivo methods to assess serum-transferable protection against Plasmodium sporozoite challenge.


Molecular Therapy | 2014

A Next-generation Genetically Attenuated Plasmodium falciparum Parasite Created by Triple Gene Deletion

Sebastian A. Mikolajczak; Viswanathan Lakshmanan; Matthew Fishbaugher; Nelly Camargo; Anke Harupa; Alexis Kaushansky; Alyse N. Douglass; Michael Baldwin; Julie Healer; Matthew T. O'Neill; Thuan Phuong; Alan F. Cowman; Stefan H. I. Kappe

Immunization with live-attenuated Plasmodium sporozoites completely protects against malaria infection. Genetic engineering offers a versatile platform to create live-attenuated sporozoite vaccine candidates. We previously generated a genetically attenuated parasite (GAP) by deleting the P52 and P36 genes in the NF54 wild-type (WT) strain of Plasmodium falciparum (Pf p52(-)/p36(-) GAP). Preclinical assessment of p52(-)/p36(-) GAP in a humanized mouse model indicated an early and severe liver stage growth defect. However, human exposure to >200 Pf p52(-)/p36(-) GAP-infected mosquito bites in a safety trial resulted in peripheral parasitemia in one of six volunteers, revealing that this GAP was incompletely attenuated. We have now created a triple gene deleted GAP by additionally removing the SAP1 gene (Pf p52(-)/p36(-)/sap1(-) GAP) and employed flippase (FLP)/flippase recognition target (FRT) recombination for drug selectable marker cassette removal. This next-generation GAP was indistinguishable from WT parasites in blood stage and mosquito stage development. Using an improved humanized mouse model transplanted with human hepatocytes and human red blood cells, we show that despite a high-dose sporozoite challenge, Pf p52(-)/p36(-)/sap1(-) GAP did not transition to blood stage infection and appeared to be completely attenuated. Thus, clinical testing of Pf p52(-)/p36(-)/sap1(-) GAP assessing safety, immunogenicity, and efficacy against sporozoite challenge is warranted.


Cell Reports | 2013

Suppression of Host p53 Is Critical for Plasmodium Liver-Stage Infection

Alexis Kaushansky; Albert S. Ye; Laura S. Austin; Sebastian A. Mikolajczak; Ashley M. Vaughan; Nelly Camargo; Peter Metzger; Alyse N. Douglass; Gavin MacBeath; Stefan H. I. Kappe

Plasmodium parasites infect the liver and replicate inside hepatocytes before they invade erythrocytes and trigger clinical malaria. Analysis of host signaling pathways affected by liver-stage infection could provide critical insights into host-pathogen interactions and reveal targets for intervention. Using protein lysate microarrays, we found that Plasmodium yoelii rodent malaria parasites perturb hepatocyte regulatory pathways involved in cell survival, proliferation, and autophagy. Notably, the prodeath protein p53 was substantially decreased in infected hepatocytes, suggesting that it could be targeted by the parasite to foster survival. Indeed, mice that express increased levels of p53 showed reduced liver-stage parasite burden, whereas p53 knockout mice suffered increased liver-stage burden. Furthermore, boosting p53 levels with the use of the small molecule Nutlin-3 dramatically reduced liver-stage burden in vitro and in vivo. We conclude that perturbation of the hepatocyte p53 pathway critically impacts parasite survival. Thus, host pathways might constitute potential targets for host-based antimalarial prophylaxis.


Cellular Microbiology | 2014

Of men in mice: the success and promise of humanized mouse models for human malaria parasite infections

Alexis Kaushansky; Sebastian A. Mikolajczak; Marissa Vignali; Stefan H. I. Kappe

Forty percent of people worldwide are at risk of malaria infection, and despite control efforts it remains the most deadly parasitic disease. Unfortunately, rapid discovery and development of new interventions for malaria are hindered by the lack of small animal models that support the complex life cycles of the main parasite species infecting humans. Such tools must accommodate human parasite tropism for human tissue. Mouse models with human tissue developed to date have already enhanced our knowledge of human parasites, and are useful tools for assessing anti‐parasitic interventions. Although these systems are imperfect, their continued refinement will likely broaden their utility. Some of the malaria parasites interactions with human hepatocytes and human erythrocytes can already be modelled with available humanized mouse systems. However, interactions with other relevant human tissues such as the skin and immune system, as well as most transitions between life cycle stages in vivo will require refinement of existing humanized mouse models. Here, we review the recent successes achieved in modelling human malaria parasite biology in humanized mice, and discuss how these models have potential to become a valuable part of the toolbox used for understanding the biology of, and development of interventions to, malaria.


Vaccine | 2014

Immunization with genetically attenuated P. falciparum parasites induces long-lived antibodies that efficiently block hepatocyte invasion by sporozoites

Olivia C. Finney; Gladys J. Keitany; Hannah Smithers; Alexis Kaushansky; Stefan H. I. Kappe; Ruobing Wang

Whole-parasite malaria vaccines have shown promise in clinical trials. We recently reported the first human trial of a malaria vaccine based on Plasmodium falciparum genetically attenuated parasites (PfGAP). Herein we report for the first time that PfGAP induces prolonged functional humoral responses in humans. Six volunteers were exposed to 5 bites of PfGAP-infected mosquitoes followed by approximately 200 bites. Plasma collected from all volunteers 3 months after the last exposure efficiently inhibits invasion of hepatocytes by P. falciparum sporozoites. The level of inhibition observed is comparable to that attained using plasma collected after 4-5 intravenously administrations of high numbers of irradiated sporozoites, validating the potential of PfGAP malaria vaccines. Our data highlight the role of antibody responses in pre-erythrocytic stages of human malaria, and suggests that to be protective, malaria vaccines might need to elicit long-lasting functional antibodies in addition to cellular responses.


Molecular and Biochemical Parasitology | 2012

Development of a quantitative flow cytometry-based assay to assess infection by Plasmodium falciparum sporozoites

Alexis Kaushansky; Nastaran Rezakhani; Henning Mann; Stefan H. I. Kappe

The human malaria parasite Plasmodium falciparum causes the most deadly parasitic disease worldwide, necessitating the development of interventions that block infection. Yet, preclinical assays to measure inhibition of infection date from the 1980s and are based on microscopy. Here, we describe the development of a simple flow cytometric assay that can be used to quantitatively assess P. falciparum sporozoite infection in vitro in low and medium throughput. We demonstrate the utility of this assay for assessing both drug inhibition of infection and measuring efficacy of antibodies in blocking parasite infection. This methodology will aid in assessing functional antibody responses to vaccination and novel drugs that prevent mosquito-to-man transmission of malaria.


Nature Medicine | 2011

The crucial role of hepatocyte growth factor receptor during liver-stage infection is not conserved among Plasmodium species.

Alexis Kaushansky; Stefan H. I. Kappe

The crucial role of hepatocyte growth factor receptor during liver-stage infection is not conserved among Plasmodium species


Molecular Therapy | 2015

Host-based Prophylaxis Successfully Targets Liver Stage Malaria Parasites

Alyse N. Douglass; Heather S. Kain; Marian Abdullahi; Nadia Arang; Laura S. Austin; Sebastian A. Mikolajczak; Zachary P. Billman; Jen C.C. Hume; Sean C. Murphy; Stefan H. I. Kappe; Alexis Kaushansky

Eliminating malaria parasites during the asymptomatic but obligate liver stages (LSs) of infection would stop disease and subsequent transmission. Unfortunately, only a single licensed drug that targets all LSs, Primaquine, is available. Targeting host proteins might significantly expand the repertoire of prophylactic drugs against malaria. Here, we demonstrate that both Bcl-2 inhibitors and P53 agonists dramatically reduce LS burden in a mouse malaria model in vitro and in vivo by altering the activity of key hepatocyte factors on which the parasite relies. Bcl-2 inhibitors act primarily by inducing apoptosis in infected hepatocytes, whereas P53 agonists eliminate parasites in an apoptosis-independent fashion. In combination, Bcl-2 inhibitors and P53 agonists act synergistically to delay, and in some cases completely prevent, the onset of blood stage disease. Both families of drugs are highly effective at doses that do not cause substantial hepatocyte cell death in vitro or liver damage in vivo. P53 agonists and Bcl-2 inhibitors were also effective when administered to humanized mice infected with Plasmodium falciparum. Our data demonstrate that host-based prophylaxis could be developed into an effective intervention strategy that eliminates LS parasites before the onset of clinical disease and thus opens a new avenue to prevent malaria.


Cellular Microbiology | 2014

Susceptibility to Plasmodium liver stage infection is altered by hepatocyte polyploidy

Laura S. Austin; Alexis Kaushansky; Stefan H. I. Kappe

Plasmodium parasites infect hepatocytes of their mammalian hosts and undergo obligate liver stage development. The specific host cell attributes that are important for liver infection remain largely unknown. Several host signalling pathways are perturbed in infected hepatocytes, some of which are important in the generation of hepatocyte polyploidy. To test the functional consequence of polyploidy on liver infection, we infected hepatocytes with the rodent malaria parasite Plasmodium yoelii both in vitro and in vivo and examined the ploidy of infected and uninfected hepatocytes by flow cytometry. In both hepatoma cell lines and in the mouse liver, the fraction of polyploid cells was higher in the infected cell population than in the uninfected cell population. When the data were reanalysed by comparing the extent of Plasmodium infection within each ploidy subset, we found that infection rates were elevated in more highly polyploid cells and lower in diploid cells. Furthermore, we found that the parasites preference for host cells with high ploidy is conserved among rodent malaria species and the human malaria parasite Plasmodium falciparum. This parasite preference for host cells of high ploidy cannot be explained by differences in hepatocyte size or DNA replication. We conclude that Plasmodium preferentially infects and develops in polyploid hepatocytes.

Collaboration


Dive into the Alexis Kaushansky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge