Algis Jasinskas
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Algis Jasinskas.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Peter D. Crompton; Matthew A. Kayala; Boubacar Traore; Kassoum Kayentao; Aissata Ongoiba; Greta E. Weiss; Douglas M. Molina; Chad Burk; Michael Waisberg; Algis Jasinskas; Xiaolin Tan; Safiatou Doumbo; Didier Doumtabe; Younoussou Kone; David L. Narum; Xiaowu Liang; Ogobara K. Doumbo; Louis H. Miller; Denise L. Doolan; Pierre Baldi; Philip L. Felgner; Susan K. Pierce
Abs are central to malaria immunity, which is only acquired after years of exposure to Plasmodium falciparum (Pf). Despite the enormous worldwide burden of malaria, the targets of protective Abs and the basis of their inefficient acquisition are unknown. Addressing these knowledge gaps could accelerate malaria vaccine development. To this end, we developed a protein microarray containing ∼23% of the Pf 5,400-protein proteome and used this array to probe plasma from 220 individuals between the ages of 2–10 years and 18–25 years in Mali before and after the 6-month malaria season. Episodes of malaria were detected by passive surveillance over the 8-month study period. Ab reactivity to Pf proteins rose dramatically in children during the malaria season; however, most of this response appeared to be short-lived based on cross-sectional analysis before the malaria season, which revealed only modest incremental increases in Ab reactivity with age. Ab reactivities to 49 Pf proteins measured before the malaria season were significantly higher in 8–10-year-old children who were infected with Pf during the malaria season but did not experience malaria (n = 12) vs. those who experienced malaria (n = 29). This analysis also provided insight into patterns of Ab reactivity against Pf proteins based on the life cycle stage at which proteins are expressed, subcellular location, and other proteomic features. This approach, if validated in larger studies and in other epidemiological settings, could prove to be a useful strategy for better understanding fundamental properties of the human immune response to Pf and for identifying previously undescribed vaccine targets.
Infection and Immunity | 2003
Caroline Ojaimi; Chad S. Brooks; Sherwood Casjens; Patricia A. Rosa; Abdallah F. Elias; Alan G. Barbour; Algis Jasinskas; Jorge L. Benach; Laura I. Katona; Justin D. Radolf; Melissa J. Caimano; Jon T. Skare; Kristen Swingle; Darrin R. Akins; Ira Schwartz
ABSTRACT Borrelia burgdorferi is the etiologic agent of Lyme disease, the most prevalent arthropod-borne disease in the United States. The genome of the type strain, B31, consists of a 910,725-bp linear chromosome and 21 linear and circular plasmids comprising 610,694 bp. During its life cycle, the spirochete exists in distinctly different environments, cycling between a tick vector and a mammalian host. Temperature is one environmental factor known to affect B. burgdorferi gene expression. To identify temperature-responsive genes, genome arrays containing 1,662 putative B. burgdorferi open reading frames (ORFs) were prepared on nylon membranes and employed to assess gene expression in B. burgdorferi B31 grown at 23 and 35°C. Differences in expression of more than 3.5 orders of magnitude could be readily discerned and quantitated. At least minimal expression from 91% of the arrayed ORFs could be detected. A total of 215 ORFs were differentially expressed at the two temperatures; 133 were expressed at significantly greater levels at 35°C, and 82 were more significantly expressed at 23°C. Of these 215 ORFs, 134 are characterized as genes of unknown function. One hundred thirty-six (63%) of the differentially expressed genes are plasmid encoded. Of particular interest is plasmid lp54 which contains 76 annotated putative genes; 31 of these exhibit temperature-regulated expression. These findings underscore the important role plasmid-encoded genes may play in adjustment of B. burgdorferi to growth under diverse environmental conditions.
Molecular & Cellular Proteomics | 2011
Alyssa E. Barry; Angela Trieu; Freya J. I. Fowkes; Jozelyn Pablo; Matthew Kalantari-Dehaghi; Algis Jasinskas; Xiaolin Tan; Matthew A. Kayala; Livingstone Tavul; Peter Siba; Karen P. Day; Pierre Baldi; Philip L. Felgner; Denise L. Doolan
Individuals that are exposed to malaria eventually develop immunity to the disease with one possible mechanism being the gradual acquisition of antibodies to the range of parasite variant surface antigens in their local area. Major antibody targets include the large and highly polymorphic Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family of proteins. Here, we use a protein microarray containing 123 recombinant PfEMP1-DBLα domains (VAR) from Papua New Guinea to seroprofile 38 nonimmune children (<4 years) and 29 hyperimmune adults (≥15 years) from the same local area. The overall magnitude, prevalence and breadth of antibody response to VAR was limited at <2 years and 2–2.9 years, peaked at 3–4 years and decreased for adults compared with the oldest children. An increasing proportion of individuals recognized large numbers of VAR proteins (>20) with age, consistent with the breadth of response stabilizing with age. In addition, the antibody response was limited in uninfected children compared with infected children but was similar in adults irrespective of infection status. Analysis of the variant-specific response confirmed that the antibody signature expands with age and infection. This also revealed that the antibody signatures of the youngest children overlapped substantially, suggesting that they are exposed to the same subset of PfEMP1 variants. VAR proteins were either seroprevalent from early in life, (<3 years), from later in childhood (≥3 years) or rarely recognized. Group 2 VAR proteins (Cys2/MFK-REY+) were serodominant in infants (<1-year-old) and all other sequence subgroups became more seroprevalent with age. The results confirm that the anti-PfEMP1-DBLα antibody responses increase in magnitude and prevalence with age and further demonstrate that they increase in stability and complexity. The protein microarray approach provides a unique platform to rapidly profile variant-specific antibodies to malaria and suggests novel insights into the acquisition of immunity to malaria.
PLOS ONE | 2013
Mina Kalantari-Dehaghi; Grant J. Anhalt; Michael Camilleri; Alex I. Chernyavsky; Sookhee Chun; Philip L. Felgner; Algis Jasinskas; Kristin M. Leiferman; Li Liang; Steve Marchenko; Rie Nakajima-Sasaki; Mark R. Pittelkow; John J. Zone; Sergei A. Grando
Pemphigus vulgaris (PV) is a mucocutaneous blistering disease characterized by IgG autoantibodies against the stratified squamous epithelium. Current understanding of PV pathophysiology does not explain the mechanism of acantholysis in patients lacking desmoglein antibodies, which justifies a search for novel targets of pemphigus autoimmunity. We tested 264 pemphigus and 138 normal control sera on the multiplexed protein array platform containing 701 human genes encompassing many known keratinocyte cell-surface molecules and members of protein families targeted by organ-non-specific PV antibodies. The top 10 antigens recognized by the majority of test patients’ sera were proteins encoded by the DSC1, DSC3, ATP2C1, PKP3, CHRM3, COL21A1, ANXA8L1, CD88 and CHRNE genes. The most common combinations of target antigens included at least one of the adhesion molecules DSC1, DSC3 or PKP3 and/or the acetylcholine receptor CHRM3 or CHRNE with or without the MHC class II antigen DRA. To identify the PV antibodies most specific to the disease process, we sorted the data based on the ratio of patient to control frequencies of antigen recognition. The frequency of antigen recognition by patients that exceeded that of control by 10 and more times were the molecules encoded by the CD33, GP1BA, CHRND, SLC36A4, CD1B, CD32, CDH8, CDH9, PMP22 and HLA-E genes as well as mitochondrial proteins encoded by the NDUFS1, CYB5B, SOD2, PDHA1 and FH genes. The highest specificity to PV showed combinations of autoantibodies to the calcium pump encoded by ATP2C1 with C5a receptor plus DSC1 or DSC3 or HLA-DRA. The results identified new targets of pemphigus autoimmunity. Novel autoantibody signatures may help explain individual variations in disease severity and treatment response, and serve as sensitive and specific biomarkers for new diagnostic assays in PV patients.
PLOS Neglected Tropical Diseases | 2013
Carolina Lessa-Aquino; Camila Borges Rodrigues; Jozelyn Pablo; Rie Sasaki; Algis Jasinskas; Li Liang; Elsio A. Wunder; Guilherme S. Ribeiro; Adam Vigil; Ricardo Galler; Douglas M. Molina; Xiaowu Liang; Mitermayer G. Reis; Albert I. Ko; Marco Alberto Medeiros; Philip L. Felgner
Background Leptospirosis is a widespread zoonotic disease worldwide. The lack of an adequate laboratory test is a major barrier for diagnosis, especially during the early stages of illness, when antibiotic therapy is most effective. Therefore, there is a critical need for an efficient diagnostic test for this life threatening disease. Methodology In order to identify new targets that could be used as diagnostic makers for leptopirosis, we constructed a protein microarray chip comprising 61% of Leptospira interrogans proteome and investigated the IgG response from 274 individuals, including 80 acute-phase, 80 convalescent-phase patients and 114 healthy control subjects from regions with endemic, high endemic, and no endemic transmission of leptospirosis. A nitrocellulose line blot assay was performed to validate the accuracy of the protein microarray results. Principal findings We found 16 antigens that can discriminate between acute cases and healthy individuals from a region with high endemic transmission of leptospirosis, and 18 antigens that distinguish convalescent cases. Some of the antigens identified in this study, such as LipL32, the non-identical domains of the Lig proteins, GroEL, and Loa22 are already known to be recognized by sera from human patients, thus serving as proof-of-concept for the serodiagnostic antigen discovery approach. Several novel antigens were identified, including the hypothetical protein LIC10215 which showed good sensitivity and specificity rates for both acute- and convalescent-phase patients. Conclusions Our study is the first large-scale evaluation of immunodominant antigens associated with naturally acquired leptospiral infection, and novel as well as known serodiagnostic leptospiral antigens that are recognized by antibodies in the sera of leptospirosis cases were identified. The novel antigens identified here may have potential use in both the development of new tests and the improvement of currently available assays for diagnosing this neglected tropical disease. Further research is needed to assess the utility of these antigens in more deployable diagnostic platforms.
Methods in Enzymology | 2002
Caroline Ojaimi; Chad S. Brooks; Darrin R. Akins; Sherwood Casjens; Patricia A. Rosa; Abdallah F. Elias; Alan G. Barbour; Algis Jasinskas; Jorge Benach; Laura Katonah; Justin D. Radolf; Melissa J. Caimano; Jon Skare; Kristen Swingle; Simon Sims; Ira Schwartz
Publisher Summary The chapter describes Borrelia burgdorferi membrane arrays contain PCR-amplified open reading frames (ORFs) from Borrelia burgdorferi strain B31 MI, and illustrates the strain whose genome sequence. The B. burgdorferi B31 genome is unique among fully sequenced bacterial genomes in that it consists of a linear chromosome 910,725 bp in length and a collection of 9 circular and 12 linear plasmids. Among the 1689 putative open reading frames (ORFs), 855 are chromosome encoded and 834 are plasmid encoded. More than 90% of the Borrelia burgdorferi plasmid ORFs are unrelated to any known bacterial sequences. The novel genes found on the Borrelia burgdorferi plasmids may, therefore, contribute to the ability of this pathogen to survive and maintain its complex life cycle. Since the identities of all the spots (ORFs) on the array are known, the complete gene expression profile of an organism under a given set of conditions may be analyzed with a single array.
Journal of Virology | 2012
Mina Kalantari-Dehaghi; Sookhee Chun; Aziz Alami Chentoufi; Jozelyn Pablo; Li Liang; Gargi Dasgupta; Douglas M. Molina; Algis Jasinskas; Rie Nakajima-Sasaki; Jiin Felgner; Gary Hermanson; Lbachir BenMohamed; Philip L. Felgner; D. Huw Davies
ABSTRACT Routine serodiagnosis of herpes simplex virus (HSV) infections is currently performed using recombinant glycoprotein G (gG) antigens from herpes simplex virus 1 (HSV-1) and HSV-2. This is a single-antigen test and has only one diagnostic application. Relatively little is known about HSV antigenicity at the proteome-wide level, and the full potential of mining the antibody repertoire to identify antigens with other useful diagnostic properties and candidate vaccine antigens is yet to be realized. To this end we produced HSV-1 and -2 proteome microarrays in Escherichia coli and probed them against a panel of sera from patients serotyped using commercial gG-1 and gG-2 (gGs for HSV-1 and -2, respectively) enzyme-linked immunosorbent assays. We identified many reactive antigens in both HSV-1 and -2, some of which were type specific (i.e., recognized by HSV-1- or HSV-2-positive donors only) and others of which were nonspecific or cross-reactive (i.e., recognized by both HSV-1- and HSV-2-positive donors). Both membrane and nonmembrane virion proteins were antigenic, although type-specific antigens were enriched for membrane proteins, despite being expressed in E. coli.
American Journal of Tropical Medicine and Hygiene | 2015
Jason A. Bailey; Jozelyn Pablo; Amadou Niangaly; Mark A. Travassos; Amed Ouattara; Drissa Coulibaly; Matthew B. Laurens; Shannon Takala-Harrison; Kirsten E. Lyke; Jeff Skinner; Andrea A. Berry; Algis Jasinskas; Rie Nakajima-Sasaki; Bourema Kouriba; Mahamadou A. Thera; Philip L. Felgner; Ogobara K. Doumbo; Christopher V. Plowe
Parasite antigen diversity poses an obstacle to developing an effective malaria vaccine. A protein microarray containing Plasmodium falciparum apical membrane antigen 1 (AMA1, n = 57) and merozoite surface protein 1 19-kD (MSP119, n = 10) variants prevalent at a malaria vaccine testing site in Bandiagara, Mali, was used to assess changes in seroreactivity caused by seasonal and lifetime exposure to malaria. Malian adults had significantly higher magnitude and breadth of seroreactivity to variants of both antigens than did Malian children. Seroreactivity increased over the course of the malaria season in children and adults, but the difference was more dramatic in children. These results help to validate diversity-covering protein microarrays as a promising tool for measuring the breadth of antibody responses to highly variant proteins, and demonstrate the potential of this new tool to help guide the development of malaria vaccines with strain-transcending efficacy.
The Journal of Infectious Diseases | 2016
Patrick Driguez; Yuesheng Li; Soraya Gaze; Mark S. Pearson; Rie Nakajima; Angela Trieu; Denise L. Doolan; Philip L. Felgner; Xunya Hou; Fernanda C. Cardoso; Algis Jasinskas; Geoffrey N. Gobert; Alex Loukas; Donald P. McManus
Infection with Schistosoma japonicum causes high levels of pathology that is predominantly determined by the cellular and humoral response of the host. However, the specific antibody response that arises during the development of disease is largely undescribed in Asian schistosomiasis-endemic populations. A schistosome protein microarray was used to compare the antibody profiles of subjects with acute infection, with early or advanced disease associated with severe pathology, with chronic infection, and subjects exposed but stool negative for S. japonicum eggs to the antibody profiles of nonexposed controls. Twenty-five immunodominant antigens were identified, including vaccine candidates, tetraspanin-related proteins, transporter molecules, and unannotated proteins. Additionally, individuals with severe pathology had a limited specific antibody response, suggesting that individuals with mild disease may use a broad and strong antibody response, particularly against surface-exposed proteins, to control pathology and/or infection. Our study has identified specific antigens that can discriminate between S. japonicum-exposed groups with different pathologies and may also allow the host to control disease pathology and provide resistance to parasite infection.
Mbio | 2016
Robert C. Kauffman; Taufiqur Rahman Bhuiyan; Rie Nakajima; Leslie M. Mayo-Smith; Rasheduzzaman Rashu; Mohammad Rubel Hoq; Fahima Chowdhury; Ashraful I. Khan; Atiqur Rahman; Siddhartha Kumar Bhaumik; Levelle Harris; Justin T O'Neal; Jessica F. Trost; Nur Haq Alam; Algis Jasinskas; Emmanuel Y. Dotsey; Meagan Kelly; Richelle C. Charles; Peng Xu; Pavol Kováč; Stephen B. Calderwood; Edward T. Ryan; Phillip L. Felgner; Firdausi Qadri; Jens Wrammert; Jason B. Harris
ABSTRACT We characterized the acute B cell response in adults with cholera by analyzing the repertoire, specificity, and functional characteristics of 138 monoclonal antibodies (MAbs) generated from single-cell-sorted plasmablasts. We found that the cholera-induced responses were characterized by high levels of somatic hypermutation and large clonal expansions. A majority of the expansions targeted cholera toxin (CT) or lipopolysaccharide (LPS). Using a novel proteomics approach, we were able to identify sialidase as another major antigen targeted by the antibody response to Vibrio cholerae infection. Antitoxin MAbs targeted both the A and B subunits, and most were also potent neutralizers of enterotoxigenic Escherichia coli heat-labile toxin. LPS-specific MAbs uniformly targeted the O-specific polysaccharide, with no detectable responses to either the core or the lipid moiety of LPS. Interestingly, the LPS-specific antibodies varied widely in serotype specificity and functional characteristics. One participant infected with the Ogawa serotype produced highly mutated LPS-specific antibodies that preferentially bound the previously circulating Inaba serotype. This demonstrates durable memory against a polysaccharide antigen presented at the mucosal surface and provides a mechanism for the long-term, partial heterotypic immunity seen following cholera. IMPORTANCE Cholera is a diarrheal disease that results in significant mortality. While oral cholera vaccines are beneficial, they do not achieve equivalent protection compared to infection with Vibrio cholerae. Although antibodies likely mediate protection, the mechanisms of immunity following cholera are poorly understood, and a detailed understanding of antibody responses to cholera is of significance for human health. In this study, we characterized the human response to cholera at the single-plasmablast, monoclonal antibody level. Although this approach has not been widely applied to the study of human bacterial infection, we were able to uncover the basis of cross-reactivity between different V. cholerae serotypes and the likely impact of prior enterotoxigenic Escherichia coli exposure on the response to cholera, as well as identify novel antigenic targets. In addition to improving our understanding of the repertoire and function of the antibody response to cholera in humans, this study has implications for future cholera vaccination efforts. Cholera is a diarrheal disease that results in significant mortality. While oral cholera vaccines are beneficial, they do not achieve equivalent protection compared to infection with Vibrio cholerae. Although antibodies likely mediate protection, the mechanisms of immunity following cholera are poorly understood, and a detailed understanding of antibody responses to cholera is of significance for human health. In this study, we characterized the human response to cholera at the single-plasmablast, monoclonal antibody level. Although this approach has not been widely applied to the study of human bacterial infection, we were able to uncover the basis of cross-reactivity between different V. cholerae serotypes and the likely impact of prior enterotoxigenic Escherichia coli exposure on the response to cholera, as well as identify novel antigenic targets. In addition to improving our understanding of the repertoire and function of the antibody response to cholera in humans, this study has implications for future cholera vaccination efforts.