Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ali Hajimiri is active.

Publication


Featured researches published by Ali Hajimiri.


IEEE Journal of Solid-state Circuits | 1998

A general theory of phase noise in electrical oscillators

Ali Hajimiri; Thomas H. Lee

A general model is introduced which is capable of making accurate, quantitative predictions about the phase noise of different types of electrical oscillators by acknowledging the true periodically time-varying nature of all oscillators. This new approach also elucidates several previously unknown design criteria for reducing close-in phase noise by identifying the mechanisms by which intrinsic device noise and external noise sources contribute to the total phase noise. In particular, it explains the details of how 1/f noise in a device upconverts into close-in phase noise and identifies methods to suppress this upconversion. The theory also naturally accommodates cyclostationary noise sources, leading to additional important design insights. The model reduces to previously available phase noise models as special cases. Excellent agreement among theory, simulations, and measurements is observed.


IEEE Journal of Solid-state Circuits | 1999

Design issues in CMOS differential LC oscillators

Ali Hajimiri; Thomas H. Lee

An analysis of phase noise in differential cross-coupled inductance-capacitance (LC) oscillators is presented. The effect of tail current and tank power dissipation on the voltage amplitude is shown. Various noise sources in the complementary cross-coupled pair are identified, and their effect on phase noise is analyzed. The predictions are in good agreement with measurements over a large range of tail currents and supply voltages. A 1.8 GHz LC oscillator with a phase noise of -121 dBc/Hz at 600 kHz is demonstrated, dissipating 6 mW of power using on-chip spiral inductors.


IEEE Journal of Solid-state Circuits | 1999

Jitter and phase noise in ring oscillators

Ali Hajimiri; Sotirios Limotyrakis; Thomas H. Lee

A companion analysis of clock jitter and phase noise of single-ended and differential ring oscillators is presented. The impulse sensitivity functions are used to derive expressions for the jitter and phase noise of ring oscillators. The effect of the number of stages, power dissipation, frequency of oscillation, and short-channel effects on the jitter and phase noise of ring oscillators is analyzed. Jitter and phase noise due to substrate and supply noise is discussed, and the effect of symmetry on the upconversion of 1/f noise is demonstrated. Several new design insights are given for low jitter/phase-noise design. Good agreement between theory and measurements is observed.


custom integrated circuits conference | 1999

Oscillator phase noise: a tutorial

Thomas H. Lee; Ali Hajimiri

Linear time-invariant (LTI) phase noise theories provide important qualitative design insights but are limited in their quantitative predictive power. Part of the difficulty is that device noise undergoes multiple frequency translations to become oscillator phase noise. A quantitative understanding of this process requires abandoning the principle of time invariance assumed in most older theories of phase noise. Fortunately, the noise-to-phase transfer function of oscillators is still linear, despite the existence of the nonlinearities necessary for amplitude stabilization. In addition to providing a quantitative reconciliation between theory and measurement, the time-varying phase noise model presented in this tutorial identifies the importance of symmetry in suppressing the upconversion of 1/f noise into close-in phase noise, and provides an explicit appreciation of cyclostationary effects and AM-PM conversion. These insights allow a reinterpretation of why the Colpitts oscillator exhibits good performance, and suggest new oscillator topologies. Tuned LC and ring oscillator circuit examples are presented to reinforce the theoretical considerations developed. Simulation issues and the accommodation of amplitude noise are considered in appendixes.


IEEE Journal of Solid-state Circuits | 2001

Concepts and methods in optimization of integrated LC VCOs

Donhee Ham; Ali Hajimiri

Underlying physical mechanisms controlling the noise properties of oscillators are studied. This treatment shows the importance of inductance selection for oscillator noise optimization. A design strategy centered around an inductance selection scheme is executed using a practical graphical optimization method to optimize phase noise subject to design constraints such as power dissipation, tank amplitude, tuning range, startup condition, and diameters of spiral inductors. The optimization technique is demonstrated through a design example, leading to a 2.4-GHz fully integrated, LC voltage-controlled oscillator (VCO) implemented using 0.35-/spl mu/m MOS transistors. The measured phase-noise values are -121, -117, and -115 dBc/Hz at 600-kHz offset from 1.91, 2.03, and 2.60-GHz carriers, respectively. The VCO dissipates 4 mA from a 2.5-V supply voltage. The inversion mode MOSCAP tuning is used to achieve 26% of tuning range. Two figures of merit for performance comparison of various oscillators are introduced and used to compare this work to previously reported results.


IEEE Transactions on Microwave Theory and Techniques | 2002

Concurrent multiband low-noise amplifiers-theory, design, and applications

Hossein Hashemi; Ali Hajimiri

The concept of concurrent multiband low-noise-amplifiers (LNAs) is introduced. A systematic way to design concurrent multiband integrated LNAs in general is developed. Applications of concurrent multiband LNAs in concurrent multiband receivers together with receiver architecture are discussed. Experimental results of a dual-band LNA implemented in a 0.35-/spl mu/m CMOS technology as a demonstration of the concept and theory is presented.


IEEE Journal of Solid-state Circuits | 2002

Fully integrated CMOS power amplifier design using the distributed active-transformer architecture

Ichiro Aoki; Scott D. Kee; David B. Rutledge; Ali Hajimiri

A novel on-chip impedance matching and power-combining method, the distributed active transformer is presented. It combines several low-voltage push-pull amplifiers efficiently with their outputs in series to produce a larger output power while maintaining a 50-/spl Omega/ match. It also uses virtual ac grounds and magnetic couplings extensively to eliminate the need for any off-chip component, such as tuned bonding wires or external inductors. Furthermore, it desensitizes the operation of the amplifier to the inductance of bonding wires making the design more reproducible. To demonstrate the feasibility of this concept, a 2.4-GHz 2-W 2-V truly fully integrated power amplifier with 50-/spl Omega/ input and output matching has been fabricated using 0.35-/spl mu/m CMOS transistors. It achieves a power added efficiency (PAE) of 41 % at this power level. It can also produce 450 mW using a 1-V supply. Harmonic suppression is 64 dBc or better. This new topology makes possible a truly fully integrated watt-level gigahertz range low-voltage CMOS power amplifier for the first time.


IEEE Transactions on Microwave Theory and Techniques | 2002

Distributed active transformer-a new power-combining and impedance-transformation technique

Ichiro Aoki; Scott D. Kee; David B. Rutledge; Ali Hajimiri

In this paper, we compare the performance of the newly introduced distributed active transformer (DAT) structure to that of conventional on-chip impedance-transformations methods. Their fundamental power-efficiency limitations in the design of high-power fully integrated amplifiers in standard silicon process technologies are analyzed. The DAT is demonstrated to be an efficient impedance-transformation and power-combining method, which combines several low-voltage push-pull amplifiers in series by magnetic coupling. To demonstrate the validity of the new concept, a 2.4-GHz 1.9-W 2-V fully integrated power-amplifier achieving a power-added efficiency of 41% with 50-/spl Omega/ input and output matching has been fabricated using 0.35-/spl mu/m CMOS transistors.


IEEE Journal of Solid-state Circuits | 2006

A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas

Aydin Babakhani; Xiang Guan; Abbas Komijani; Arun Natarajan; Ali Hajimiri

In this paper, we present the receiver and the on-chip antenna sections of a fully integrated 77-GHz four-element phased-array transceiver with on-chip antennas in silicon. The receiver section of the chip includes the complete down-conversion path comprising low-noise amplifier (LNA), frequency synthesizer, phase rotators, combining amplifiers, and on-chip dipole antennas. The signal combining is performed using a novel distributed active combining amplifier at an IF of 26 GHz. In the LO path, the output of the 52-GHz VCO is routed to different elements and can be phase shifted locally by the phase rotators. A silicon lens on the backside is used to reduce the loss due to the surface-wave power of the silicon substrate. Our measurements show a single-element LNA gain of 23 dB and a noise figure of 6.0dB. Each of the four receive paths has a gain of 37 dB and a noise figure of 8.0 dB. Each on-chip antenna has a gain of +2 dBi


IEEE Journal of Solid-state Circuits | 2002

A noise-shifting differential Colpitts VCO

Roberto Aparicio; Ali Hajimiri

A novel noise-shifting differential Colpitts VCO is presented. It uses current switching to lower phase noise by cyclostationary noise alignment and improve the start-up condition. A design strategy is also devised to enhance the phase noise performance of quadrature coupled oscillators. Two integrated VCOs are presented as design examples.

Collaboration


Dive into the Ali Hajimiri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abbas Komijani

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Behrooz Abiri

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Wang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiang Guan

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hossein Hashemi

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge