Ali Nowrouzi
German Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ali Nowrouzi.
Nature Biotechnology | 2011
Richard Gabriel; Angelo Lombardo; Anne Arens; Jeffrey C. Miller; Pietro Genovese; Christine Kaeppel; Ali Nowrouzi; Cynthia C. Bartholomae; Jianbin Wang; Geoffrey Friedman; Michael C. Holmes; Philip D. Gregory; Hanno Glimm; Manfred Schmidt; Luigi Naldini; Christof von Kalle
Zinc-finger nucleases (ZFNs) allow gene editing in live cells by inducing a targeted DNA double-strand break (DSB) at a specific genomic locus. However, strategies for characterizing the genome-wide specificity of ZFNs remain limited. We show that nonhomologous end-joining captures integrase-defective lentiviral vectors at DSBs, tagging these transient events. Genome-wide integration site analysis mapped the actual in vivo cleavage activity of four ZFN pairs targeting CCR5 or IL2RG. Ranking loci with repeatedly detectable nuclease activity by deep-sequencing allowed us to monitor the degree of ZFN specificity in vivo at these positions. Cleavage required binding of ZFNs in specific spatial arrangements on DNA bearing high homology to the intended target site and only tolerated mismatches at individual positions of the ZFN binding sites. Whereas the consensus binding sequence derived in vivo closely matched that obtained in biochemical experiments, the ranking of in vivo cleavage sites could not be predicted in silico. Comprehensive mapping of ZFN activity in vivo will facilitate the broad application of these reagents in translational research.
Cell Stem Cell | 2011
Sebastian M. Dieter; Claudia R. Ball; Christopher M. Hoffmann; Ali Nowrouzi; Friederike Herbst; Oksana Zavidij; Ulrich Abel; Anne Arens; Wilko Weichert; Karsten Brand; Moritz Koch; Jürgen Weitz; Manfred Schmidt; Christof von Kalle; Hanno Glimm
Human colon cancer harbors a small subfraction of tumor-initiating cells (TICs) that is assumed to be a functionally homogeneous stem-cell-like population driving tumor maintenance and metastasis formation. We found unexpected cellular heterogeneity within the TIC compartment, which contains three types of TICs. Extensively self-renewing long-term TICs (LT-TICs) maintained tumor formation in serial xenotransplants. Tumor transient amplifying cells (T-TACs) with limited or no self-renewal capacity contributed to tumor formation only in primary mice. Rare delayed contributing TICs (DC-TICs) were exclusively active in secondary or tertiary mice. Bone marrow was identified as an important reservoir of LT-TICs. Metastasis formation was almost exclusively driven by self-renewing LT-TICs. Our results demonstrate that tumor initiation, self-renewal, and metastasis formation are limited to particular subpopulations of TICs in primary human colon cancer. We identify LT-TICs as a quantifiable target for therapies aimed toward eradication of self-renewing tumorigenic and metastatic colon cancer cells.
Nature Medicine | 2009
Richard Gabriel; Ralph Eckenberg; Anna Paruzynski; Cynthia C. Bartholomae; Ali Nowrouzi; Anne Arens; Steven J. Howe; Claudia Cattoglio; Wei Wang; Katrin Faber; Kerstin Schwarzwaelder; Romy Kirsten; Annette Deichmann; Claudia R. Ball; Kamaljit S. Balaggan; Rafael J. Yáñez-Muñoz; Robin R. Ali; H. Bobby Gaspar; Luca Biasco; Alessandro Aiuti; Daniela Cesana; Eugenio Montini; Luigi Naldini; Odile Cohen-Haguenauer; Fulvio Mavilio; Aj Thrasher; Hanno Glimm; Christof von Kalle; William Saurin; Manfred Schmidt
Retroviral vectors have induced subtle clonal skewing in many gene therapy patients and severe clonal proliferation and leukemia in some of them, emphasizing the need for comprehensive integration site analyses to assess the biosafety and genomic pharmacokinetics of vectors and clonal fate of gene-modified cells in vivo. Integration site analyses such as linear amplification–mediated PCR (LAM-PCR) require a restriction digest generating unevenly small fragments of the genome. Here we show that each restriction motif allows for identification of only a fraction of all genomic integrants, hampering the understanding and prediction of biological consequences after vector insertion. We developed a model to define genomic access to the viral integration site that provides optimal restriction motif combinations and minimizes the percentage of nonaccessible insertion loci. We introduce a new nonrestrictive LAM-PCR approach that has superior capabilities for comprehensive unbiased integration site retrieval in preclinical and clinical samples independent of restriction motifs and amplification inefficiency.
Journal of Virology | 2008
Magalie Penaud-Budloo; Caroline Le Guiner; Ali Nowrouzi; Alice Toromanoff; Yan Cherel; Pierre Chenuaud; Manfred Schmidt; Christof von Kalle; Fabienne Rolling; Philippe Moullier; Richard O. Snyder
ABSTRACT Recombinant adeno-associated virus (rAAV) vectors are capable of mediating long-term gene expression following administration to skeletal muscle. In rodent muscle, the vector genomes persist in the nucleus in concatemeric episomal forms. Here, we demonstrate with nonhuman primates that rAAV vectors integrate inefficiently into the chromosomes of myocytes and reside predominantly as episomal monomeric and concatemeric circles. The episomal rAAV genomes assimilate into chromatin with a typical nucleosomal pattern. The persistence of the vector genomes and gene expression for years in quiescent tissues suggests that a bona fide chromatin structure is important for episomal maintenance and transgene expression. These findings were obtained from primate muscles transduced with rAAV1 and rAAV8 vectors for up to 22 months after intramuscular delivery of 5 × 1012 viral genomes/kg. Because of this unique context, our data, which provide important insight into in situ vector biology, are highly relevant from a clinical standpoint.
Nature Medicine | 2013
Christine Kaeppel; Stuart G Beattie; Raffaele Fronza; Richard van Logtenstein; Florence Salmon; Sabine Schmidt; Stephan Wolf; Ali Nowrouzi; Hanno Glimm; Christof von Kalle; Harald Petry; Daniel Gaudet; Manfred Schmidt
The clinical application of adeno-associated virus vectors (AAVs) is limited because of concerns about AAV integration–mediated tumorigenicity. We performed integration-site analysis after AAV1-LPLS447X intramuscular injection in five lipoprotein lipase–deficient subjects, revealing random nuclear integration and hotspots in mitochondria. We conclude that AAV integration is potentially safe and that vector breakage and integration may occur from each position of the vector genome. Future viral integration-site analyses should include the mitochondrial genome.
Molecular Therapy | 2012
Ali Nowrouzi; Magalie Penaud-Budloo; Christine Kaeppel; Uwe Appelt; Caroline Le Guiner; Philippe Moullier; Christof von Kalle; Richard O. Snyder; Manfred Schmidt
The comprehensive characterization of recombinant adeno-associated viral (rAAV) integration frequency and persistence for assessing rAAV vector biosafety in gene therapy is severely limited due to the predominance of episomal rAAV vector genomes maintained in vivo. Introducing rAAV insertional standards (rAIS), we show that linear amplification-mediated (LAM)-PCR and deep sequencing can be used for validated measurement of rAAV integration frequencies. Integration of rAAV2/1 or rAAV2/8, following intramuscular (IM) or regional intravenous (RI) administration of therapeutically relevant vector doses in nine adult non-human primates (NHP), occurs at low frequency between 10-4 and 10-5 both in NHP liver and muscle, but with no preference for specific genomic loci. High resolution mapping of inverted terminal repeat (ITR) breakpoints in concatemeric and integrated vector genomes reveals distinct vector recombination hotspots, including large deletions of up to 3 kb. Moreover, retrieval of integrated rAAV genomes indicated approximately threefold increase in liver compared to muscle. This molecular analysis of rAAV persistence in NHP provides a promising basis for a reliable genotoxic risk assessment of rAAV in clinical trials.The comprehensive characterization of recombinant adeno-associated viral (rAAV) integration frequency and persistence for assessing rAAV vector biosafety in gene therapy is severely limited due to the predominance of episomal rAAV vector genomes maintained in vivo. Introducing rAAV insertional standards (rAIS), we show that linear amplification-mediated (LAM)-PCR and deep sequencing can be used for validated measurement of rAAV integration frequencies. Integration of rAAV2/1 or rAAV2/8, following intramuscular (IM) or regional intravenous (RI) administration of therapeutically relevant vector doses in nine adult non-human primates (NHP), occurs at low frequency between 10(-4) and 10(-5) both in NHP liver and muscle, but with no preference for specific genomic loci. High resolution mapping of inverted terminal repeat (ITR) breakpoints in concatemeric and integrated vector genomes reveals distinct vector recombination hotspots, including large deletions of up to 3 kb. Moreover, retrieval of integrated rAAV genomes indicated approximately threefold increase in liver compared to muscle. This molecular analysis of rAAV persistence in NHP provides a promising basis for a reliable genotoxic risk assessment of rAAV in clinical trials.
Molecular Therapy | 2012
Friederike Herbst; Claudia R. Ball; Francesca Tuorto; Ali Nowrouzi; Wei Wang; Oksana Zavidij; Sebastian M. Dieter; Sylvia Fessler; Franciscus van der Hoeven; Ulrich Kloz; Frank Lyko; Manfred Schmidt; Christof von Kalle; Hanno Glimm
Lentiviral vectors (LV) are widely used to stably transfer genes into target cells investigating or treating gene functions. In addition, gene transfer into early murine embryos may be improved to efficiently generate transgenic mice. We applied lentiviral gene transfer to generate a mouse model transgenic for SET binding protein-1 (Setbp1) and enhanced green fluorescent protein (eGFP). Neither transgenic founders nor their vector-positive offspring transcribed or expressed the transgenes. Bisulfite sequencing of the internal spleen focus-forming virus (SFFV) promoter demonstrated extensive methylation of all analyzed CpGs in the transgenic mice. To analyze the impact of Setbp1 on epigenetic silencing, embryonic stem cells (ESC) were differentiated into cardiomyocytes (CM) in vitro. In contrast to human promoters in LV, virally derived promoter sequences were strongly methylated during differentiation, independent of the transgene. Moreover, the commonly used SFFV promoter (SFFVp) was highly methylated with remarkable strength and frequency during hematopoietic differentiation in vivo in LV but less in γ-retroviral (γ-RV) backbones. In summary, we conclude that LV using an internal SFFVp are not suitable to generate transgenic mice or perform constitutive expression studies in differentiating cells. Choosing the appropriate promoter is also crucial to allow stable transgene expression in clinical gene therapy.
Nature Communications | 2015
Eliana Ruggiero; Jan P. Nicolay; Raffaele Fronza; Anne Arens; Anna Paruzynski; Ali Nowrouzi; Gökçe Ürenden; Christina Lulay; Sven Schneider; Sergij Goerdt; Hanno Glimm; Peter H. Krammer; Manfred Schmidt; Christof von Kalle
Unbiased dissection of T-cell receptor (TCR) repertoire diversity at the nucleotide level could provide important insights into human immunity. Here we show that TCR ligation-anchored-magnetically captured PCR (TCR-LA-MC PCR) identifies TCR α- and β-chain diversity without sequence-associated or quantitative restrictions in healthy and diseased conditions. TCR-LA-MC PCR identifies convergent recombination events, classifies different stages of cutaneous T-cell lymphoma in vivo and demonstrates TCR reactivation after in vitro cytomegalovirus stimulation. TCR-LA-MC PCR allows ultra-deep data access to both physiological TCR diversity and mechanisms influencing clonality in all clinical settings with restricted or distorted TCR repertoires.
Molecular Therapy | 2011
Citra Nurfarah Zaini Mattar; Amit C. Nathwani; Simon N. Waddington; Niraja Dighe; Christine Kaeppel; Ali Nowrouzi; Jenny McIntosh; Nuryanti Johana; Bryan Ogden; Nicholas M. Fisk; Andrew M. Davidoff; Anna L. David; Donald Peebles; Marcus B. Valentine; Jens Uwe Appelt; Christof von Kalle; Manfred Schmidt; Arijit Biswas; Mahesh Choolani; Jerry Chan
Intrauterine gene transfer (IUGT) offers ontological advantages including immune naiveté mediating tolerance to the vector and transgenic products, and effecting a cure before development of irreversible pathology. Despite proof-of-principle in rodent models, expression efficacy with a therapeutic transgene has yet to be demonstrated in a preclinical nonhuman primate (NHP) model. We aimed to determine the efficacy of human Factor IX (hFIX) expression after adeno-associated-viral (AAV)-mediated IUGT in NHP. We injected 1.0-1.95 × 10(13) vector genomes (vg)/kg of self-complementary (sc) AAV5 and 8 with a LP1-driven hFIX transgene intravenously in 0.9G late gestation NHP fetuses, leading to widespread transduction with liver tropism. Liver-specific hFIX expression was stably maintained between 8 and 112% of normal activity in injected offspring followed up for 2-22 months. AAV8 induced higher hFIX expression (P = 0.005) and milder immune response than AAV5. Random hepatocellular integration was found with no hotspots. Transplacental spread led to low-level maternal tissue transduction, without evidence of immunotoxicity or germline transduction in maternal oocytes. A single intravenous injection of scAAV-LP1-hFIXco to NHP fetuses in late-gestation produced sustained clinically-relevant levels of hFIX with liver-specific expression and a non-neutralizing immune response. These data are encouraging for conditions where gene transfer has the potential to avert perinatal death and long-term irreversible sequelae.
Molecular Therapy | 2011
Marshall W. Huston; Niek P. van Til; Trudi P. Visser; Shazia Arshad; Martijn H. Brugman; Claudia Cattoglio; Ali Nowrouzi; Yuedan Li; Axel Schambach; Manfred Schmidt; Christopher Baum; Christof von Kalle; Fulvio Mavilio; Fang Zhang; Michael P. Blundell; Adrian J. Thrasher; Monique M.A. Verstegen; Gerard Wagemaker
Clinical trials have demonstrated the potential of ex vivo hematopoietic stem cell gene therapy to treat X-linked severe combined immunodeficiency (SCID-X1) using γ-retroviral vectors, leading to immune system functionality in the majority of treated patients without pretransplant conditioning. The success was tempered by insertional oncogenesis in a proportion of the patients. To reduce the genotoxicity risk, a self-inactivating (SIN) lentiviral vector (LV) with improved expression of a codon optimized human interleukin-2 receptor γ gene (IL2RG) cDNA (coγc), regulated by its 1.1 kb promoter region (γcPr), was compared in efficacy to the viral spleen focus forming virus (SF) and the cellular phosphoglycerate kinase (PGK) promoters. Pretransplant conditioning of Il2rg(-/-) mice resulted in long-term reconstitution of T and B lymphocytes, normalized natural antibody titers, humoral immune responses, ConA/IL-2 stimulated spleen cell proliferation, and polyclonal T-cell receptor gene rearrangements with a clear integration preference of the SF vector for proto-oncogenes, contrary to the PGK and γcPr vectors. We conclude that SIN lentiviral gene therapy using coγc driven by the γcPr or PGK promoter corrects the SCID phenotype, potentially with an improved safety profile, and that low-dose conditioning proved essential for immune competence, allowing for a reduced threshold of cell numbers required.