Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alicia Solórzano is active.

Publication


Featured researches published by Alicia Solórzano.


Journal of Virology | 2005

Pathogenicity of Influenza Viruses with Genes from the 1918 Pandemic Virus: Functional Roles of Alveolar Macrophages and Neutrophils in Limiting Virus Replication and Mortality in Mice

Terrence M. Tumpey; Adolfo García-Sastre; Jeffery K. Taubenberger; Peter Palese; David E. Swayne; Mary J. Pantin-Jackwood; Stacey Schultz-Cherry; Alicia Solórzano; Nico van Rooijen; Jacqueline M. Katz; Christopher F. Basler

ABSTRACT The Spanish influenza pandemic of 1918 to 1919 swept the globe and resulted in the deaths of at least 20 million people. The basis of the pulmonary damage and high lethality caused by the 1918 H1N1 influenza virus remains largely unknown. Recombinant influenza viruses bearing the 1918 influenza virus hemagglutinin (HA) and neuraminidase (NA) glycoproteins were rescued in the genetic background of the human A/Texas/36/91 (H1N1) (1918 HA/NA:Tx/91) virus. Pathogenesis experiments revealed that the 1918 HA/NA:Tx/91 virus was lethal for BALB/c mice without the prior adaptation that is usually required for human influenza A H1N1 viruses. The increased mortality of 1918 HA/NA:Tx/91-infected mice was accompanied by (i) increased (>200-fold) viral replication, (ii) greater influx of neutrophils into the lung, (iii) increased numbers of alveolar macrophages (AMs), and (iv) increased protein expression of cytokines and chemokines in lung tissues compared with the levels seen for control Tx/91 virus-infected mice. Because pathological changes in AMs and neutrophil migration correlated with lung inflammation, we assessed the role of these cells in the pathogenesis associated with 1918 HA/NA:Tx/91 virus infection. Neutrophil and/or AM depletion initiated 3 or 5 days after infection did not have a significant effect on the disease outcome following a lethal 1918 HA/NA:Tx/91 virus infection. By contrast, depletion of these cells before a sublethal infection with 1918 HA/NA:Tx/91 virus resulted in uncontrolled virus growth and mortality in mice. In addition, neutrophil and/or AM depletion was associated with decreased expression of cytokines and chemokines. These results indicate that a human influenza H1N1 virus possessing the 1918 HA and NA glycoproteins can induce severe lung inflammation consisting of AMs and neutrophils, which play a role in controlling the replication and spread of 1918 HA/NA:Tx/91 virus after intranasal infection of mice.


Journal of Virology | 2005

Mutations in the NS1 protein of swine influenza virus impair anti-interferon activity and confer attenuation in pigs

Alicia Solórzano; Richard J. Webby; Kelly M. Lager; Bruce H. Janke; Adolfo García-Sastre; Jürgen A. Richt

ABSTRACT It has been shown previously that the nonstructural protein NS1 of influenza virus is an alpha/beta interferon (IFN-α/β) antagonist, both in vitro and in experimental animal model systems. However, evidence of this function in a natural host has not yet been obtained. Here we investigated the role of the NS1 protein in the virulence of a swine influenza virus (SIV) isolate in pigs by using reverse genetics. The virulent wild-type A/Swine/Texas/4199-2/98 (TX/98) virus and various mutants encoding carboxy-truncated NS1 proteins were rescued. Growth properties of TX/98 viruses with mutated NS1, induction of IFN in tissue culture, and virulence-attenuation in pigs were analyzed and compared to those of the recombinant wild-type TX/98 virus. Our results indicate that deletions in the NS1 protein decrease the ability of the TX/98 virus to prevent IFN-α/β synthesis in pig cells. Moreover, all NS1 mutant viruses were attenuated in pigs, and this correlated with the amount of IFN-α/β induced in vitro. These data suggest that the NS1 protein of SIV is a virulence factor. Due to their attenuation, NS1-mutated swine influenza viruses might have a great potential as live attenuated vaccine candidates against SIV infections of pigs.


Journal of Virology | 2009

Live Attenuated Influenza Viruses Containing NS1 Truncations as Vaccine Candidates against H5N1 Highly Pathogenic Avian Influenza

John Steel; Anice C. Lowen; Lindomar Pena; Matthew Angel; Alicia Solórzano; Randy A. Albrecht; Daniel R. Perez; Adolfo García-Sastre; Peter Palese

ABSTRACT Due to the high mortality associated with recent, widely circulating strains of H5N1 influenza virus in poultry, the recurring introduction of H5N1 viruses from birds to humans, and the difficulties in H5N1 eradication by elimination of affected flocks, an effective vaccine against HPAI (highly pathogenic avian influenza) is highly desirable. Using reverse genetics, a set of experimental live attenuated vaccine strains based on recombinant H5N1 influenza virus A/Viet Nam/1203/04 was generated. Each virus was attenuated through expression of a hemagglutinin protein in which the polybasic cleavage site had been removed. Viruses were generated which possessed a full-length NS1 or a C-terminally truncated NS1 protein of 73, 99, or 126 amino acids. Viruses with each NS genotype were combined with a PB2 polymerase gene which carried either a lysine or a glutamic acid at position 627. We predicted that glutamic acid at position 627 of PB2 would attenuate the virus in mammalian hosts, thus increasing the safety of the vaccine. All recombinant viruses grew to high titers in 10-day-old embryonated chicken eggs but were attenuated in mammalian cell culture. Induction of high levels of beta interferon by all viruses possessing truncations in the NS1 protein was demonstrated by interferon bioassay. The viruses were each found to be highly attenuated in a mouse model. Vaccination with a single dose of any virus conferred complete protection from death upon challenge with a mouse lethal virus expressing H5N1 hemagglutinin and neuraminidase proteins. In a chicken model, vaccination with a single dose of a selected virus encoding the NS1 1-99 protein completely protected chickens from lethal challenge with homologous HPAI virus A/Viet Nam/1203/04 (H5N1) and provided a high level of protection from a heterologous virus, A/egret/Egypt/01/06 (H5N1). Thus, recombinant influenza A/Viet Nam/1203/04 viruses attenuated through the introduction of mutations in the hemagglutinin, NS1, and PB2 coding regions display characteristics desirable for live attenuated vaccines and hold potential as vaccine candidates in poultry as well as in mammalian hosts.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene

Daniel Grimm; Peter Staeheli; Martin Hufbauer; Iris Koerner; Luis Martínez-Sobrido; Alicia Solórzano; Adolfo García-Sastre; Otto Haller; Georg Kochs

The IFN-induced resistance factor Mx1 is a critical component of innate immunity against influenza A viruses (FLUAV) in mice. Animals carrying a wild-type Mx1 gene (Mx1+/+) differ from regular laboratory mice (Mx1−/−) in that they are highly resistant to infection with standard FLUAV strains. We identified an extraordinary variant of the FLUAV strain, A/PR/8/34 (H1N1) (designated hvPR8), which is unusually virulent in Mx1+/+ mice. hvPR8 was well controlled in Mx1+/+ but not Mx1−/− mice provided that the animals were treated with IFN before infection, indicating that hvPR8 exhibits normal sensitivity to growth restriction by Mx1. hvPR8 multiplied much faster than standard PR8 early in infection because of highly efficient viral gene expression in infected cells. Studies with reassortant viruses containing defined genome segments of both hvPR8 and standard PR8 demonstrated that the HA, neuraminidase, and polymerase genes of hvPR8 all contributed to virulence, indicating that efficient host cell entry and early gene expression renders hvPR8 highly pathogenic. These results reveal a surprisingly simple concept of how influenza viruses may gain virulence and illustrate that high speed of virus growth can outcompete the antiviral response of the infected host.


Journal of Virology | 2006

Vaccination of Pigs against Swine Influenza Viruses by Using an NS1-Truncated Modified Live-Virus Vaccine

Jürgen A. Richt; Porntippa Lekcharoensuk; Kelly M. Lager; Amy L. Vincent; Christina M. Loiacono; Bruce H. Janke; Wai-Hong Wu; Kyoung-Jin Yoon; Richard J. Webby; Alicia Solórzano; Adolfo García-Sastre

ABSTRACT Swine influenza viruses (SIV) naturally infect pigs and can be transmitted to humans. In the pig, genetic reassortment to create novel influenza subtypes by mixing avian, human, and swine influenza viruses is possible. An SIV vaccine inducing cross-protective immunity between different subtypes and strains circulating in pigs is highly desirable. Previously, we have shown that an H3N2 SIV (A/swine/Texas/4199-2/98 [TX98]) containing a deleted NS1 gene expressing a truncated NS1 protein of 126 amino acids, NS1▴126, was attenuated in swine. In this study, 4-week-old pigs were vaccinated with the TX98 NS1▴126 modified live virus (MLV). Ten days after boosting, pigs were challenged with wild-type homologous H3N2 or heterosubtypic H1N1 SIV and sacrificed 5 days later. The MLV was highly attenuated and completely protected against challenge with the homologous virus. Vaccinated pigs challenged with the heterosubtypic H1N1 virus demonstrated macroscopic lung lesions similar to those of the unvaccinated H1N1 control pigs. Remarkably, vaccinated pigs challenged with the H1N1 SIV had significantly lower microscopic lung lesions and less virus shedding from the respiratory tract than did unvaccinated, H1N1-challenged pigs. All vaccinated pigs developed significant levels of hemagglutination inhibition and enzyme-linked immunosorbent assay titers in serum and mucosal immunoglobulin A antibodies against H3N2 SIV antigens. Vaccinated pigs were seronegative for NS1, indicating the potential use of the TX98 NS1▴126 MLV as a vaccine to differentiate infected from vaccinated animals.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus

Claudia Pappas; Patricia V. Aguilar; Christopher F. Basler; Alicia Solórzano; Hui Zeng; Lucy A. Perrone; Peter Palese; Adolfo García-Sastre; Jacqueline M. Katz; Terrence M. Tumpey

The 1918 influenza pandemic was exceptionally severe, resulting in the death of up to 50 million people worldwide. Here, we show which virus genes contributed to the replication and virulence of the 1918 influenza virus. Recombinant viruses, in which genes of the 1918 virus were replaced with genes from a contemporary human H1N1 influenza virus, A/Texas/36/91 (Tx/91), were generated. The exchange of most 1918 influenza virus genes with seasonal influenza H1N1 virus genes did not alter the virulence of the 1918 virus; however, substitution of the hemagglutinin (HA), neuraminidase (NA), or polymerase subunit PB1 genes significantly affected the ability of this virus to cause severe disease in mice. The 1918 virus virulence observed in mice correlated with the ability of 1918 recombinant viruses to replicate efficiently in human airway cells. In a second series of experiments, eight 1918 1:7 recombinants were generated, in which each Tx/91 virus gene was individually replaced by a corresponding gene from 1918 virus. Replication capacity of the individual 1:7 reassortant viruses was assessed in mouse lungs and human airway cells. Increased virus titers were observed among 1:7 viruses containing individual 1918 HA, NA, and PB1 genes. In addition, the 1918 PB1:Tx/91 (1:7) virus showed a distinctly larger plaque size phenotype than the small plaque phenotype of the 1918 PA:Tx/91 and 1918 PB2:Tx/91 1:7 reassortants. These results highlight the importance of the 1918 HA, NA, and PB1 genes for optimal virus replication and virulence of this pandemic strain.


Journal of Virology | 2006

Hemagglutinin (HA) Proteins from H1 and H3 Serotypes of Influenza A Viruses Require Different Antigen Designs for the Induction of Optimal Protective Antibody Responses as Studied by Codon-Optimized HA DNA Vaccines

Shixia Wang; Jessica Taaffe; Christopher S. Parker; Alicia Solórzano; Hong Cao; Adolfo García-Sastre; Shan Lu

ABSTRACT Effective antibody responses provide crucial immunity against influenza virus infection. The hemagglutinin (HA) protein is the major target of protective antibody responses induced by viral infection and by vaccination with both inactivated and live-attenuated flu vaccines, but knowledge about the optimal designs of protective HA antigens from different flu serotypes is still limited. In this study, we have significantly improved the immunogenicity of HA-expressing DNA vaccines by using codon-optimized HA sequences for either an H1 serotype (A/NewCal/20/99) or an H3 serotype (A/Panama/2007/99) human influenza A virus and then used these constructs as model antigens to identify the optimal HA antigen designs to elicit high-level protective antibody responses. Two forms of HA antigen, a wild-type, full-length HA and a secreted form with transmembrane (TM) domain-truncated HA, were produced. Both forms of HA DNA vaccines, from either H1 or H3 serotypes, were able to elicit high levels of HA-specific immunoglobulin G responses in immunized rabbits as measured by enzyme-linked immunosorbent assay. Interestingly, the abilities of H1 HA and H3 HA antigens to elicit hemagglutination inhibition (HI) and neutralizing antibody (NAb) responses differ. For the H1 HA antigens, the full-length HA induced significantly higher HI and NAb responses than did the TM-truncated HA. For the H3 HA antigen, both the full-length HA and TM-truncated HA induced high levels of HI and NAb responses. These data indicate that H1 and H3 antigens have different expression requirements for the induction of an optimal protective antibody response and that the structure integrity of HA antigens is critical for eliciting type-specific protective antibody responses. Our findings will have an important impact on future subunit-based flu vaccine development.


Nature Communications | 2013

Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility

Rong Hai; Mirco Schmolke; Victor H. Leyva-Grado; Rajagowthamee Thangavel; Irina Margine; Eric L. Jaffe; Florian Krammer; Alicia Solórzano; Adolfo García-Sastre; Peter Palese; Nicole M. Bouvier

Without baseline human immunity to the emergent avian influenza A(H7N9) virus, neuraminidase inhibitors are vital for controlling viral replication in severe infections. An amino acid change in the viral neuraminidase associated with drug resistance, NA-R292K (N2 numbering), has been found in some H7N9 clinical isolates. Here we assess the impact of the NA-R292K substitution on antiviral sensitivity and viral replication, pathogenicity and transmissibility of H7N9 viruses. Our data indicate that an H7N9 isolate encoding the NA-R292K substitution is highly resistant to oseltamivir and peramivir and partially resistant to zanamivir. Furthermore, H7N9 reassortants with and without the resistance mutation demonstrate comparable viral replication in primary human respiratory cells, virulence in mice and transmissibility in guinea pigs. Thus, in stark contrast to oseltamivir-resistant seasonal influenza A(H3N2) viruses, H7N9 virus replication and pathogenicity in these models are not substantially altered by the acquisition of high-level oseltamivir resistance due to the NA-R292K mutation.


Vaccine | 2008

Heterologous HA DNA vaccine prime—inactivated influenza vaccine boost is more effective than using DNA or inactivated vaccine alone in eliciting antibody responses against H1 or H3 serotype influenza viruses

Shixia Wang; Christopher S. Parker; Jessica Taaffe; Alicia Solórzano; Adolfo García-Sastre; Shan Lu

The trivalent inactivated vaccine (TIV) is used to prevent seasonal influenza virus infection in humans, however, the immunogenicity of this vaccine may be influenced by the priming effect of previous influenza vaccinations or exposure to antigenically related influenza viruses. The current study examines the immunogenicity of a clinically licensed TIV in rabbits naïve to influenza antigens. Animals were immunized with either the licensed TIV, a bivalent (H1 and H3) HA DNA vaccine or the combination of both. Temporal and peak level serum anti-influenza virus IgG responses were determined by enzyme-linked immunosorbent assay (ELISA). Functional antibody responses were measured by hemagglutination inhibition and microneutralization against either A/NewCaledonia//20/99 (H1N1) or A/Panama/2007/99 (H3N2) influenza viruses. Our results demonstrate that the immunogenicity of the TIV is low in sero-negative animals. More significantly, the heterologous DNA prime-TIV boost regimen was more immunogenic than the homologous prime-boost using either TIV or DNA vaccines alone. This finding justifies further investigation of HA DNA vaccines as a priming immunogen for the next generation of vaccines against seasonal or pandemic influenza virus infections.


Journal of Virology | 2007

Functional Genomic and Serological Analysis of the Protective Immune Response Resulting from Vaccination of Macaques with an NS1-Truncated Influenza Virus

Carole R. Baskin; Helle Bielefeldt-Ohmann; Adolfo García-Sastre; Terrence M. Tumpey; N. Van Hoeven; Victoria S. Carter; Matthew J. Thomas; Sean Proll; Alicia Solórzano; Rosalind Billharz; Jamie L. Fornek; Sean Thomas; C.H. Chen; Edward A. Clark; Kaja Murali-Krishna; Michael G. Katze

ABSTRACT We are still inadequately prepared for an influenza pandemic due to the lack of a vaccine effective for subtypes to which the majority of the human population has no prior immunity and which could be produced rapidly in sufficient quantities. There is therefore an urgent need to investigate novel vaccination approaches. Using a combination of genomic and traditional tools, this study compares the protective efficacy in macaques of an intrarespiratory live influenza virus vaccine produced by truncating NS1 in the human influenza A/Texas/36/91 (H1N1) virus with that of a conventional vaccine based on formalin-killed whole virus. After homologous challenge, animals in the live-vaccine group had greatly reduced viral replication and pathology in lungs and reduced upper respiratory inflammation. They also had lesser induction of innate immune pathways in lungs and of interferon-sensitive genes in bronchial epithelium. This postchallenge response contrasted with that shortly after vaccination, when more expression of interferon-sensitive genes was observed in bronchial cells from the live-vaccine group. This suggested induction of a strong innate immune response shortly after vaccination with the NS1-truncated virus, followed by greater maturity of the postchallenge immune response, as demonstrated with robust influenza virus-specific CD4+ T-cell proliferation, immunoglobulin G production, and transcriptional induction of T- and B-cell pathways in lung tissue. In conclusion, a single respiratory tract inoculation with an NS1-truncated influenza virus was effective in protecting nonhuman primates from homologous challenge. This protection was achieved in the absence of significant or long-lasting adverse effects and through induction of a robust adaptive immune response.

Collaboration


Dive into the Alicia Solórzano's collaboration.

Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Peter Palese

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Terrence M. Tumpey

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacqueline M. Katz

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Swayne

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly M. Lager

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge