Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alisa K. Manning is active.

Publication


Featured researches published by Alisa K. Manning.


The New England Journal of Medicine | 2014

Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes

Siddhartha Jaiswal; Jason Flannick; Alisa K. Manning; Peter Grauman; Brenton G. Mar; R. Coleman Lindsley; Craig H. Mermel; Noël P. Burtt; Alejandro Chavez; John M. Higgins; Vladislav Moltchanov; Frank C. Kuo; Michael J. Kluk; Brian E. Henderson; Leena Kinnunen; Heikki A. Koistinen; Claes Ladenvall; Gad Getz; Adolfo Correa; Benjamin F. Banahan; Stacey Gabriel; Sekar Kathiresan; Heather M. Stringham; Mark I. McCarthy; Michael Boehnke; Jaakko Tuomilehto; Christopher A. Haiman; Leif Groop; Gil Atzmon; James G. Wilson

BACKGROUND The incidence of hematologic cancers increases with age. These cancers are associated with recurrent somatic mutations in specific genes. We hypothesized that such mutations would be detectable in the blood of some persons who are not known to have hematologic disorders. METHODS We analyzed whole-exome sequencing data from DNA in the peripheral-blood cells of 17,182 persons who were unselected for hematologic phenotypes. We looked for somatic mutations by identifying previously characterized single-nucleotide variants and small insertions or deletions in 160 genes that are recurrently mutated in hematologic cancers. The presence of mutations was analyzed for an association with hematologic phenotypes, survival, and cardiovascular events. RESULTS Detectable somatic mutations were rare in persons younger than 40 years of age but rose appreciably in frequency with age. Among persons 70 to 79 years of age, 80 to 89 years of age, and 90 to 108 years of age, these clonal mutations were observed in 9.5% (219 of 2300 persons), 11.7% (37 of 317), and 18.4% (19 of 103), respectively. The majority of the variants occurred in three genes: DNMT3A, TET2, and ASXL1. The presence of a somatic mutation was associated with an increase in the risk of hematologic cancer (hazard ratio, 11.1; 95% confidence interval [CI], 3.9 to 32.6), an increase in all-cause mortality (hazard ratio, 1.4; 95% CI, 1.1 to 1.8), and increases in the risks of incident coronary heart disease (hazard ratio, 2.0; 95% CI, 1.2 to 3.4) and ischemic stroke (hazard ratio, 2.6; 95% CI, 1.4 to 4.8). CONCLUSIONS Age-related clonal hematopoiesis is a common condition that is associated with increases in the risk of hematologic cancer and in all-cause mortality, with the latter possibly due to an increased risk of cardiovascular disease. (Funded by the National Institutes of Health and others.).


The New England Journal of Medicine | 2008

Genotype score in addition to common risk factors for prediction of type 2 diabetes.

James B. Meigs; Peter Shrader; Lisa M. Sullivan; Jarred B. McAteer; Caroline S. Fox; Josée Dupuis; Alisa K. Manning; Jose C. Florez; Peter W.F. Wilson; Ralph B. D'Agostino; L. Adrienne Cupples

BACKGROUND Multiple genetic loci have been convincingly associated with the risk of type 2 diabetes mellitus. We tested the hypothesis that knowledge of these loci allows better prediction of risk than knowledge of common phenotypic risk factors alone. METHODS We genotyped single-nucleotide polymorphisms (SNPs) at 18 loci associated with diabetes in 2377 participants of the Framingham Offspring Study. We created a genotype score from the number of risk alleles and used logistic regression to generate C statistics indicating the extent to which the genotype score can discriminate the risk of diabetes when used alone and in addition to clinical risk factors. RESULTS There were 255 new cases of diabetes during 28 years of follow-up. The mean (+/-SD) genotype score was 17.7+/-2.7 among subjects in whom diabetes developed and 17.1+/-2.6 among those in whom diabetes did not develop (P<0.001). The sex-adjusted odds ratio for diabetes was 1.12 per risk allele (95% confidence interval, 1.07 to 1.17). The C statistic was 0.534 without the genotype score and 0.581 with the score (P=0.01). In a model adjusted for sex and self-reported family history of diabetes, the C statistic was 0.595 without the genotype score and 0.615 with the score (P=0.11). In a model adjusted for age, sex, family history, body-mass index, fasting glucose level, systolic blood pressure, high-density lipoprotein cholesterol level, and triglyceride level, the C statistic was 0.900 without the genotype score and 0.901 with the score (P=0.49). The genotype score resulted in the appropriate risk reclassification of, at most, 4% of the subjects. CONCLUSIONS A genotype score based on 18 risk alleles predicted new cases of diabetes in the community but provided only a slightly better prediction of risk than knowledge of common risk factors alone.


BMC Medical Genetics | 2007

A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study

Sekar Kathiresan; Alisa K. Manning; Serkalem Demissie; Ralph B. D'Agostino; Aarti Surti; Candace Guiducci; Lauren Gianniny; Noeel P. Burtt; Olle Melander; Marju Orho-Melander; Donna K. Arnett; Gina M. Peloso; Jose M. Ordovas; L. Adrienne Cupples

BackgroundBlood lipid levels including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) are highly heritable. Genome-wide association is a promising approach to map genetic loci related to these heritable phenotypes.MethodsIn 1087 Framingham Heart Study Offspring cohort participants (mean age 47 years, 52% women), we conducted genome-wide analyses (Affymetrix 100K GeneChip) for fasting blood lipid traits. Total cholesterol, HDL-C, and TG were measured by standard enzymatic methods and LDL-C was calculated using the Friedewald formula. The long-term averages of up to seven measurements of LDL-C, HDL-C, and TG over a ~30 year span were the primary phenotypes. We used generalized estimating equations (GEE), family-based association tests (FBAT) and variance components linkage to investigate the relationships between SNPs (on autosomes, with minor allele frequency ≥10%, genotypic call rate ≥80%, and Hardy-Weinberg equilibrium p ≥ 0.001) and multivariable-adjusted residuals. We pursued a three-stage replication strategy of the GEE association results with 287 SNPs (P < 0.001 in Stage I) tested in Stage II (n ~1450 individuals) and 40 SNPs (P < 0.001 in joint analysis of Stages I and II) tested in Stage III (n~6650 individuals).ResultsLong-term averages of LDL-C, HDL-C, and TG were highly heritable (h2 = 0.66, 0.69, 0.58, respectively; each P < 0.0001). Of 70,987 tests for each of the phenotypes, two SNPs had p < 10-5 in GEE results for LDL-C, four for HDL-C, and one for TG. For each multivariable-adjusted phenotype, the number of SNPs with association p < 10-4 ranged from 13 to 18 and with p < 10-3, from 94 to 149. Some results confirmed previously reported associations with candidate genes including variation in the lipoprotein lipase gene (LPL) and HDL-C and TG (rs7007797; P = 0.0005 for HDL-C and 0.002 for TG). The full set of GEE, FBAT and linkage results are posted at the database of Genotype and Phenotype (dbGaP). After three stages of replication, there was no convincing statistical evidence for association (i.e., combined P < 10-5 across all three stages) between any of the tested SNPs and lipid phenotypes.ConclusionUsing a 100K genome-wide scan, we have generated a set of putative associations for common sequence variants and lipid phenotypes. Validation of selected hypotheses in additional samples did not identify any new loci underlying variability in blood lipids. Lack of replication may be due to inadequate statistical power to detect modest quantitative trait locus effects (i.e., <1% of trait variance explained) or reduced genomic coverage of the 100K array. GWAS in FHS using a denser genome-wide genotyping platform and a better-powered replication strategy may identify novel loci underlying blood lipids.


BMC Medical Genetics | 2007

The Framingham Heart Study 100K SNP Genome-Wide Association Study Resource: Overview of 17 Phenotype Working Group Reports

L. Adrienne Cupples; Heather T Arruda; Emelia J. Benjamin; Ralph B. D'Agostino; Serkalem Demissie; Anita L. DeStefano; Josée Dupuis; Kathleen Falls; Caroline S. Fox; Daniel J. Gottlieb; Diddahally R. Govindaraju; Chao-Yu Guo; Nancy L. Heard-Costa; Shih-Jen Hwang; Sekar Kathiresan; Douglas P. Kiel; Jason M. Laramie; Martin G. Larson; Daniel Levy; Chunyu Liu; Kathryn L. Lunetta; Matthew D Mailman; Alisa K. Manning; James B. Meigs; Joanne M. Murabito; Christopher Newton-Cheh; George T. O'Connor; Christopher J. O'Donnell; Mona Pandey; Sudha Seshadri

BackgroundThe Framingham Heart Study (FHS), founded in 1948 to examine the epidemiology of cardiovascular disease, is among the most comprehensively characterized multi-generational studies in the world. Many collected phenotypes have substantial genetic contributors; yet most genetic determinants remain to be identified. Using single nucleotide polymorphisms (SNPs) from a 100K genome-wide scan, we examine the associations of common polymorphisms with phenotypic variation in this community-based cohort and provide a full-disclosure, web-based resource of results for future replication studies.MethodsAdult participants (n = 1345) of the largest 310 pedigrees in the FHS, many biologically related, were genotyped with the 100K Affymetrix GeneChip. These genotypes were used to assess their contribution to 987 phenotypes collected in FHS over 56 years of follow up, including: cardiovascular risk factors and biomarkers; subclinical and clinical cardiovascular disease; cancer and longevity traits; and traits in pulmonary, sleep, neurology, renal, and bone domains. We conducted genome-wide variance components linkage and population-based and family-based association tests.ResultsThe participants were white of European descent and from the FHS Original and Offspring Cohorts (examination 1 Offspring mean age 32 ± 9 years, 54% women). This overview summarizes the methods, selected findings and limitations of the results presented in the accompanying series of 17 manuscripts. The presented association results are based on 70,897 autosomal SNPs meeting the following criteria: minor allele frequency ≥ 10%, genotype call rate ≥ 80%, Hardy-Weinberg equilibrium p-value ≥ 0.001, and satisfying Mendelian consistency. Linkage analyses are based on 11,200 SNPs and short-tandem repeats. Results of phenotype-genotype linkages and associations for all autosomal SNPs are posted on the NCBI dbGaP website at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.ConclusionWe have created a full-disclosure resource of results, posted on the dbGaP website, from a genome-wide association study in the FHS. Because we used three analytical approaches to examine the association and linkage of 987 phenotypes with thousands of SNPs, our results must be considered hypothesis-generating and need to be replicated. Results from the FHS 100K project with NCBI web posting provides a resource for investigators to identify high priority findings for replication.


PLOS Genetics | 2012

Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases

John Perry; Benjamin F. Voight; Loı̈c Yengo; Najaf Amin; Josée Dupuis; Martha Ganser; Harald Grallert; Pau Navarro; Man Li; Lu Qi; Valgerdur Steinthorsdottir; Robert A. Scott; Peter Almgren; Dan E. Arking; Yurii S. Aulchenko; Beverley Balkau; Rafn Benediktsson; Richard N. Bergman; Eric Boerwinkle; Lori L. Bonnycastle; Noël P. Burtt; Harry Campbell; Guillaume Charpentier; Francis S. Collins; Christian Gieger; Todd Green; Samy Hadjadj; Andrew T. Hattersley; Christian Herder; Albert Hofman

Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m2) compared to obese cases (BMI≥30 Kg/m2). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m2) or 4,123 obese cases (BMI≥30 kg/m2), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4×10−9, OR = 1.13 [95% CI 1.09–1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00–1.06]). A variant in HMG20A—previously identified in South Asians but not Europeans—was associated with type 2 diabetes in obese cases (P = 1.3×10−8, OR = 1.11 [95% CI 1.07–1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02–1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10–1.17], P = 3.2×10−14. This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05–1.08], P = 2.2×10−16. This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.


PLOS Genetics | 2014

Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population.

Elaine T. Lim; Peter Würtz; Aki S. Havulinna; Priit Palta; Taru Tukiainen; Karola Rehnström; Tonu Esko; Reedik Mägi; Michael Inouye; Tuuli Lappalainen; Yingleong Chan; Rany M. Salem; Monkol Lek; Jason Flannick; Xueling Sim; Alisa K. Manning; Claes Ladenvall; Suzannah Bumpstead; Eija Hämäläinen; Kristiina Aalto; Mikael Maksimow; Marko Salmi; Stefan Blankenberg; Diego Ardissino; Svati H. Shah; Benjamin D. Horne; Ruth McPherson; Gerald K. Hovingh; Muredach P. Reilly; Hugh Watkins

Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically relevant genes. Isolated populations with recent bottlenecks offer advantages for studying rare variants in complex diseases as they have deleterious variants that are present at higher frequencies as well as a substantial reduction in rare neutral variation. To explore the potential of the Finnish founder population for studying low-frequency (0.5–5%) variants in complex diseases, we compared exome sequence data on 3,000 Finns to the same number of non-Finnish Europeans and discovered that, despite having fewer variable sites overall, the average Finn has more low-frequency loss-of-function variants and complete gene knockouts. We then used several well-characterized Finnish population cohorts to study the phenotypic effects of 83 enriched loss-of-function variants across 60 phenotypes in 36,262 Finns. Using a deep set of quantitative traits collected on these cohorts, we show 5 associations (p<5×10−8) including splice variants in LPA that lowered plasma lipoprotein(a) levels (P = 1.5×10−117). Through accessing the national medical records of these participants, we evaluate the LPA finding via Mendelian randomization and confirm that these splice variants confer protection from cardiovascular disease (OR = 0.84, P = 3×10−4), demonstrating for the first time the correlation between very low levels of LPA in humans with potential therapeutic implications for cardiovascular diseases. More generally, this study articulates substantial advantages for studying the role of rare variation in complex phenotypes in founder populations like the Finns and by combining a unique population genetic history with data from large population cohorts and centralized research access to National Health Registers.


Journal of Clinical Investigation | 2009

Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans

Andrew C. Edmondson; Robert J. Brown; Sekar Kathiresan; L. Adrienne Cupples; Serkalem Demissie; Alisa K. Manning; Majken K. Jensen; Eric B. Rimm; Jian Wang; Amrith Rodrigues; Vaneeta Bamba; Sumeet A. Khetarpal; Megan L. Wolfe; Mingyao Li; Muredach P. Reilly; Jens Aberle; David Evans; Robert A. Hegele; Daniel J. Rader

Elevated plasma concentrations of HDL cholesterol (HDL-C) are associated with protection from atherosclerotic cardiovascular disease. Animal models indicate that decreased expression of endothelial lipase (LIPG) is inversely associated with HDL-C levels, and genome-wide association studies have identified LIPG variants as being associated with HDL-C levels in humans. We hypothesized that loss-of-function mutations in LIPG may result in elevated HDL-C and therefore performed deep resequencing of LIPG exons in cases with elevated HDL-C levels and controls with decreased HDL-C levels. We identified a significant excess of nonsynonymous LIPG variants unique to cases with elevated HDL-C. In vitro lipase activity assays demonstrated that these variants significantly decreased endothelial lipase activity. In addition, a meta-analysis across 5 cohorts demonstrated that the low-frequency Asn396Ser variant is significantly associated with increased HDL-C, while the common Thr111Ile variant is not. Functional analysis confirmed that the Asn396Ser variant has significantly decreased lipase activity both in vitro and in vivo, while the Thr111Ile variant has normal lipase activity. Our results establish that loss-of-function mutations in LIPG lead to increased HDL-C levels and support the idea that inhibition of endothelial lipase may be an effective mechanism to raise HDL-C.


Diabetes Care | 2011

Genetic Risk Reclassification for Type 2 Diabetes by Age Below or Above 50 Years Using 40 Type 2 Diabetes Risk Single Nucleotide Polymorphisms

Jose M. de Miguel-Yanes; Peter Shrader; Michael J. Pencina; Caroline S. Fox; Alisa K. Manning; Richard W. Grant; Josée Dupuis; Jose C. Florez; Ralph B. D'Agostino; L. Adrienne Cupples; James B. Meigs

OBJECTIVE To test if knowledge of type 2 diabetes genetic variants improves disease prediction. RESEARCH DESIGN AND METHODS We tested 40 single nucleotide polymorphisms (SNPs) associated with diabetes in 3,471 Framingham Offspring Study subjects followed over 34 years using pooled logistic regression models stratified by age (<50 years, diabetes cases = 144; or ≥50 years, diabetes cases = 302). Models included clinical risk factors and a 40-SNP weighted genetic risk score. RESULTS In people <50 years of age, the clinical risk factors model C-statistic was 0.908; the 40-SNP score increased it to 0.911 (P = 0.3; net reclassification improvement (NRI): 10.2%, P = 0.001). In people ≥50 years of age, the C-statistics without and with the score were 0.883 and 0.884 (P = 0.2; NRI: 0.4%). The risk per risk allele was higher in people <50 than ≥50 years of age (24 vs. 11%; P value for age interaction = 0.02). CONCLUSIONS Knowledge of common genetic variation appropriately reclassifies younger people for type 2 diabetes risk beyond clinical risk factors but not older people.


Diabetes | 2008

Common variants in the adiponectin gene (ADIPOQ) associated with plasma adiponectin levels, type 2 diabetes, and diabetes-related quantitative traits: the Framingham Offspring Study.

Marie-France Hivert; Alisa K. Manning; Jarred B. McAteer; Jose C. Florez; Josée Dupuis; Caroline S. Fox; Christopher J. O'Donnell; L. Adrienne Cupples; James B. Meigs

OBJECTIVE— Variants in ADIPOQ have been inconsistently associated with adiponectin levels or diabetes. Using comprehensive linkage disequilibrium mapping, we genotyped single nucleotide polymorphisms (SNPs) in ADIPOQ to evaluate the association of common variants with adiponectin levels and risk of diabetes. RESEARCH DESIGN AND METHODS— Participants in the Framingham Offspring Study (n = 2,543, 53% women) were measured for glycemic phenotypes and incident diabetes over 28 years of follow-up; adiponectin levels were quantified at exam 7. We genotyped 22 tag SNPs that captured common (minor allele frequency >0.05) variation at r2 > 0.8 across ADIPOQ plus 20 kb 5′ and 10 kb 3′ of the gene. We used linear mixed effects models to test additive associations of each SNP with adiponectin levels and glycemic phenotypes. Hazard ratios (HRs) for incident diabetes were estimated using an adjusted Cox proportional hazards model. RESULTS— Two promoter SNPs in strong linkage disequilibrium with each other (r2 = 0.80) were associated with adiponectin levels (rs17300539; Pnominal [Pn] = 2.6 × 10−8; Pempiric [Pe] = 0.0005 and rs822387; Pn = 3.8 × 10−5; Pe = 0.001). A 3′-untranslated region (3′UTR) SNP (rs6773957) was associated with adiponectin levels (Pn = 4.4 × 10−4; Pe = 0.005). A nonsynonymous coding SNP (rs17366743, Y111H) was confirmed to be associated with diabetes incidence (HR 1.94 [95% CI 1.16–3.25] for the minor C allele; Pn = 0.01) and with higher mean fasting glucose over 28 years of follow-up (Pn = 0.0004; Pe = 0.004). No other significant associations were found with other adiposity and metabolic phenotypes. CONCLUSIONS— Adiponectin levels are associated with SNPs in two different regulatory regions (5′ promoter and 3′UTR), whereas diabetes incidence and time-averaged fasting glucose are associated with a missense SNP of ADIPOQ.


Journal of Molecular Medicine | 2007

APOA5 gene variation modulates the effects of dietary fat intake on body mass index and obesity risk in the Framingham Heart Study.

Dolores Corella; Chao-Qiang Lai; Serkalem Demissie; L. Adrienne Cupples; Alisa K. Manning; Katherine L. Tucker; Jose M. Ordovas

Diet is an important environmental factor interacting with our genes to modulate the likelihood of developing lipid disorders and, consequently, cardiovascular disease risk. Our objective was to study whether dietary intake modulates the association between APOA5 gene variation and body weight in a large population-based study. Specifically, we have examined the interaction between the APOA5–1131T>C and 56C>G (S19W) polymorphisms and the macronutrient intake (total fat, carbohydrate, and protein) in their relation to the body mass index (BMI) and obesity risk in 1,073 men and 1,207 women participating in the Framingham Offspring Study. We found a consistent and statistically significant interaction between the −1131T>C single-nucleotide polymorphism (SNP; but not the 56C>G) and total fat intake for BMI. This interaction was dose-dependent, and no statistically significant heterogeneity by gender was detected. In subjects homozygous for the −1131T major allele, BMI increased as total fat intake increased. Conversely, this increase was not present in carriers of the −1131C minor allele. Accordingly, we found significant interactions in determining obesity and overweight risks. APOA5–1131C minor allele carriers had a lower obesity risk (OR, 0.61, 95%; CI, 0.39–0.98; P = 0.032) and overweight risk (OR, 0.63, 95%; CI, 0.41–0.96; P = 0.031) compared with TT subjects in the high fat intake group (≥30% of energy ) but not when fat intake was low (OR, 1.16, 95%; CI, 0.77–1.74; P = 0.47 and OR = 1.15, 95%; CI, 0.77–1.71; P = 0.48) for obesity and overweight, respectively). When specific fatty acid groups were analyzed, monounsaturated fatty acids showed the highest statistical significance for these interactions. In conclusion, the APOA5–1131T>C SNP, which is present in approximately 13% of this population, modulates the effect of fat intake on BMI and obesity risk in both men and women.

Collaboration


Dive into the Alisa K. Manning's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline S. Fox

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Province

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xueling Sim

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Aldi T. Kraja

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge