Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jarred B. McAteer is active.

Publication


Featured researches published by Jarred B. McAteer.


The New England Journal of Medicine | 2008

Genotype score in addition to common risk factors for prediction of type 2 diabetes.

James B. Meigs; Peter Shrader; Lisa M. Sullivan; Jarred B. McAteer; Caroline S. Fox; Josée Dupuis; Alisa K. Manning; Jose C. Florez; Peter W.F. Wilson; Ralph B. D'Agostino; L. Adrienne Cupples

BACKGROUND Multiple genetic loci have been convincingly associated with the risk of type 2 diabetes mellitus. We tested the hypothesis that knowledge of these loci allows better prediction of risk than knowledge of common phenotypic risk factors alone. METHODS We genotyped single-nucleotide polymorphisms (SNPs) at 18 loci associated with diabetes in 2377 participants of the Framingham Offspring Study. We created a genotype score from the number of risk alleles and used logistic regression to generate C statistics indicating the extent to which the genotype score can discriminate the risk of diabetes when used alone and in addition to clinical risk factors. RESULTS There were 255 new cases of diabetes during 28 years of follow-up. The mean (+/-SD) genotype score was 17.7+/-2.7 among subjects in whom diabetes developed and 17.1+/-2.6 among those in whom diabetes did not develop (P<0.001). The sex-adjusted odds ratio for diabetes was 1.12 per risk allele (95% confidence interval, 1.07 to 1.17). The C statistic was 0.534 without the genotype score and 0.581 with the score (P=0.01). In a model adjusted for sex and self-reported family history of diabetes, the C statistic was 0.595 without the genotype score and 0.615 with the score (P=0.11). In a model adjusted for age, sex, family history, body-mass index, fasting glucose level, systolic blood pressure, high-density lipoprotein cholesterol level, and triglyceride level, the C statistic was 0.900 without the genotype score and 0.901 with the score (P=0.49). The genotype score resulted in the appropriate risk reclassification of, at most, 4% of the subjects. CONCLUSIONS A genotype score based on 18 risk alleles predicted new cases of diabetes in the community but provided only a slightly better prediction of risk than knowledge of common risk factors alone.


Diabetes | 2010

Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program

Kathleen A. Jablonski; Jarred B. McAteer; Paul I. W. de Bakker; Paul W. Franks; Toni I. Pollin; Robert L. Hanson; Richa Saxena; Sarah E. Fowler; Alan R. Shuldiner; William C. Knowler; David Altshuler; Jose C. Florez

OBJECTIVE Genome-wide association studies have begun to elucidate the genetic architecture of type 2 diabetes. We examined whether single nucleotide polymorphisms (SNPs) identified through targeted complementary approaches affect diabetes incidence in the at-risk population of the Diabetes Prevention Program (DPP) and whether they influence a response to preventive interventions. RESEARCH DESIGN AND METHODS We selected SNPs identified by prior genome-wide association studies for type 2 diabetes and related traits, or capturing common variation in 40 candidate genes previously associated with type 2 diabetes, implicated in monogenic diabetes, encoding type 2 diabetes drug targets or drug-metabolizing/transporting enzymes, or involved in relevant physiological processes. We analyzed 1,590 SNPs for association with incident diabetes and their interaction with response to metformin or lifestyle interventions in 2,994 DPP participants. We controlled for multiple hypothesis testing by assessing false discovery rates. RESULTS We replicated the association of variants in the metformin transporter gene SLC47A1 with metformin response and detected nominal interactions in the AMP kinase (AMPK) gene STK11, the AMPK subunit genes PRKAA1 and PRKAA2, and a missense SNP in SLC22A1, which encodes another metformin transporter. The most significant association with diabetes incidence occurred in the AMPK subunit gene PRKAG2 (hazard ratio 1.24, 95% CI 1.09–1.40, P = 7 × 10−4). Overall, there were nominal associations with diabetes incidence at 85 SNPs and nominal interactions with the metformin and lifestyle interventions at 91 and 69 mostly nonoverlapping SNPs, respectively. The lowest P values were consistent with experiment-wide 33% false discovery rates. CONCLUSIONS We have identified potential genetic determinants of metformin response. These results merit confirmation in independent samples.


Diabetes | 2011

Updated Genetic Score Based on 34 Confirmed Type 2 Diabetes Loci Is Associated With Diabetes Incidence and Regression to Normoglycemia in the Diabetes Prevention Program

Marie-France Hivert; Kathleen A. Jablonski; Leigh Perreault; Richa Saxena; Jarred B. McAteer; Paul W. Franks; Richard F. Hamman; Steven E. Kahn; Steven M. Haffner; James B. Meigs; David Altshuler; William C. Knowler; Jose C. Florez

OBJECTIVE Over 30 loci have been associated with risk of type 2 diabetes at genome-wide statistical significance. Genetic risk scores (GRSs) developed from these loci predict diabetes in the general population. We tested if a GRS based on an updated list of 34 type 2 diabetes–associated loci predicted progression to diabetes or regression toward normal glucose regulation (NGR) in the Diabetes Prevention Program (DPP). RESEARCH DESIGN AND METHODS We genotyped 34 type 2 diabetes–associated variants in 2,843 DPP participants at high risk of type 2 diabetes from five ethnic groups representative of the U.S. population, who had been randomized to placebo, metformin, or lifestyle intervention. We built a GRS by weighting each risk allele by its reported effect size on type 2 diabetes risk and summing these values. We tested its ability to predict diabetes incidence or regression to NGR in models adjusted for age, sex, ethnicity, waist circumference, and treatment assignment. RESULTS In multivariate-adjusted models, the GRS was significantly associated with increased risk of progression to diabetes (hazard ratio [HR] = 1.02 per risk allele [95% CI 1.00–1.05]; P = 0.03) and a lower probability of regression to NGR (HR = 0.95 per risk allele [95% CI 0.93–0.98]; P < 0.0001). At baseline, a higher GRS was associated with a lower insulinogenic index (P < 0.001), confirming an impairment in β-cell function. We detected no significant interaction between GRS and treatment, but the lifestyle intervention was effective in the highest quartile of GRS (P < 0.0001). CONCLUSIONS A high GRS is associated with increased risk of developing diabetes and lower probability of returning to NGR in high-risk individuals, but a lifestyle intervention attenuates this risk.


Diabetes | 2008

Common variants in the adiponectin gene (ADIPOQ) associated with plasma adiponectin levels, type 2 diabetes, and diabetes-related quantitative traits: the Framingham Offspring Study.

Marie-France Hivert; Alisa K. Manning; Jarred B. McAteer; Jose C. Florez; Josée Dupuis; Caroline S. Fox; Christopher J. O'Donnell; L. Adrienne Cupples; James B. Meigs

OBJECTIVE— Variants in ADIPOQ have been inconsistently associated with adiponectin levels or diabetes. Using comprehensive linkage disequilibrium mapping, we genotyped single nucleotide polymorphisms (SNPs) in ADIPOQ to evaluate the association of common variants with adiponectin levels and risk of diabetes. RESEARCH DESIGN AND METHODS— Participants in the Framingham Offspring Study (n = 2,543, 53% women) were measured for glycemic phenotypes and incident diabetes over 28 years of follow-up; adiponectin levels were quantified at exam 7. We genotyped 22 tag SNPs that captured common (minor allele frequency >0.05) variation at r2 > 0.8 across ADIPOQ plus 20 kb 5′ and 10 kb 3′ of the gene. We used linear mixed effects models to test additive associations of each SNP with adiponectin levels and glycemic phenotypes. Hazard ratios (HRs) for incident diabetes were estimated using an adjusted Cox proportional hazards model. RESULTS— Two promoter SNPs in strong linkage disequilibrium with each other (r2 = 0.80) were associated with adiponectin levels (rs17300539; Pnominal [Pn] = 2.6 × 10−8; Pempiric [Pe] = 0.0005 and rs822387; Pn = 3.8 × 10−5; Pe = 0.001). A 3′-untranslated region (3′UTR) SNP (rs6773957) was associated with adiponectin levels (Pn = 4.4 × 10−4; Pe = 0.005). A nonsynonymous coding SNP (rs17366743, Y111H) was confirmed to be associated with diabetes incidence (HR 1.94 [95% CI 1.16–3.25] for the minor C allele; Pn = 0.01) and with higher mean fasting glucose over 28 years of follow-up (Pn = 0.0004; Pe = 0.004). No other significant associations were found with other adiposity and metabolic phenotypes. CONCLUSIONS— Adiponectin levels are associated with SNPs in two different regulatory regions (5′ promoter and 3′UTR), whereas diabetes incidence and time-averaged fasting glucose are associated with a missense SNP of ADIPOQ.


Diabetes | 2008

The ENPP1 K121Q polymorphism is associated with type 2 diabetes in European populations: evidence from an updated meta-analysis in 42,042 subjects.

Jarred B. McAteer; Sabrina Prudente; Simonetta Bacci; Helen N. Lyon; Joel N. Hirschhorn; Vincenzo Trischitta; Jose C. Florez

OBJECTIVE—Functional studies suggest that the nonsynonymous K121Q polymorphism in the ectoenzyme nucleotide pyrophosphate phosphodiesterase 1 (ENPP1) may confer susceptibility to insulin resistance; genetic evidence on its effect on type 2 diabetes, however, has been conflicting. We therefore conducted a new meta-analysis that includes novel unpublished data from the ENPP1 Consortium and recent negative findings from large association studies to address the contribution of K121Q to type 2 diabetes. RESEARCH DESIGN AND METHODS—After a systematic review of the literature, we evaluated the effect of ENPP1 K121Q on diabetes risk under three genetic models using a random-effects approach. Our primary analysis consisted of 30 studies comprising 15,801 case and 26,241 control subjects. Due to considerable heterogeneity and large differences in allele frequencies across populations, we limited our meta-analysis to those of self-reported European descent and, when available, included BMI as a covariate. RESULTS—We found a modest increase in risk of type 2 diabetes for QQ homozygotes in white populations (combined odds ratio [OR] 1.38 [95% CI 1.10–1.74], P = 0.005). There was no evidence of publication bias, but we noted significant residual heterogeneity among studies (P = 0.02). On meta-regression, 16% of the effect was accounted for by the mean BMI of control subjects. This association was stronger in studies in which control subjects were leaner but disappeared after adjustment for mean control BMI (combined OR 0.93 [95% CI 0.75–1.15], P = 0.50). CONCLUSIONS—The ENPP1 Q121 variant increases risk of type 2 diabetes under a recessive model of inheritance in whites, an effect that appears to be modulated by BMI.


Diabetes | 2008

Extension of Type 2 Diabetes Genome-Wide Association Scan Results in the Diabetes Prevention Program

Allan F. Moore; Kathleen A. Jablonski; Jarred B. McAteer; Richa Saxena; Toni I. Pollin; Paul W. Franks; Robert L. Hanson; Alan R. Shuldiner; William C. Knowler; David Altshuler; Jose C. Florez

OBJECTIVE— Genome-wide association scans (GWASs) have identified novel diabetes-associated genes. We evaluated how these variants impact diabetes incidence, quantitative glycemic traits, and response to preventive interventions in 3,548 subjects at high risk of type 2 diabetes enrolled in the Diabetes Prevention Program (DPP), which examined the effects of lifestyle intervention, metformin, and troglitazone versus placebo. RESEARCH DESIGN AND METHODS— We genotyped selected single nucleotide polymorphisms (SNPs) in or near diabetes-associated loci, including EXT2, CDKAL1, CDKN2A/B, IGF2BP2, HHEX, LOC387761, and SLC30A8 in DPP participants and performed Cox regression analyses using genotype, intervention, and their interactions as predictors of diabetes incidence. We evaluated their effect on insulin resistance and secretion at 1 year. RESULTS— None of the selected SNPs were associated with increased diabetes incidence in this population. After adjustments for ethnicity, baseline insulin secretion was lower in subjects with the risk genotype at HHEX rs1111875 (P = 0.01); there were no significant differences in baseline insulin sensitivity. Both at baseline and at 1 year, subjects with the risk genotype at LOC387761 had paradoxically increased insulin secretion; adjustment for self-reported ethnicity abolished these differences. In ethnicity-adjusted analyses, we noted a nominal differential improvement in β-cell function for carriers of the protective genotype at CDKN2A/B after 1 year of troglitazone treatment (P = 0.01) and possibly lifestyle modification (P = 0.05). CONCLUSIONS— We were unable to replicate the GWAS findings regarding diabetes risk in the DPP. We did observe genotype associations with differences in baseline insulin secretion at the HHEX locus and a possible pharmacogenetic interaction at CDKNA2/B.


Diabetes | 2007

A 100K genome-wide association scan for diabetes and related traits in the Framingham Heart Study: replication and integration with other genome-wide datasets.

Jose C. Florez; Alisa K. Manning; Josée Dupuis; Jarred B. McAteer; Kathryn Irenze; Lauren Gianniny; Daniel B. Mirel; Caroline S. Fox; L. Adrienne Cupples; James B. Meigs

OBJECTIVE— To use genome-wide fixed marker arrays and improved analytical tools to detect genetic associations with type 2 diabetes in a carefully phenotyped human sample. RESEARCH DESIGN AND METHODS— A total of 1,087 Framingham Heart Study (FHS) family members were genotyped on the Affymetrix 100K single nucleotide polymorphism (SNP) array and examined for association with incident diabetes and six diabetes-related quantitative traits. Quality control filters yielded 66,543 SNPs for association testing. We used two complementary SNP selection strategies (a “lowest P value” strategy and a “multiple related trait” strategy) to prioritize 763 SNPs for replication. We genotyped a subset of 150 SNPs in a nonoverlapping sample of 1,465 FHS unrelated subjects and examined all 763 SNPs for in silico replication in three other 100K and one 500K genome-wide association (GWA) datasets. RESULTS— We replicated associations of 13 SNPs with one or more traits in the FHS unrelated sample (16 expected under the null); none of them showed convincing in silico replication in 100K scans. Seventy-eight SNPs were nominally associated with diabetes in one other 100K GWA scan, and two (rs2863389 and rs7935082) in more than one. Twenty-five SNPs showed promising associations with diabetes-related traits in 500K GWA data; one of them (rs952635) replicated in FHS. Five previously reported associations were confirmed in our initial dataset. CONCLUSIONS— The FHS 100K GWA resource is useful for follow-up of genetic associations with diabetes-related quantitative traits. Discovery of new diabetes genes will require larger samples and a denser array combined with well-powered replication strategies.


Diabetes | 2009

Association of Variants in RETN with Plasma Resistin Levels and Diabetes-Related Traits in the Framingham Offspring Study

Marie-France Hivert; Alisa K. Manning; Jarred B. McAteer; Josée Dupuis; Caroline S. Fox; L. Adrienne Cupples; James B. Meigs; Jose C. Florez

OBJECTIVE— The RETN gene encodes the adipokine resistin. Associations of RETN with plasma resistin levels, type 2 diabetes, and related metabolic traits have been inconsistent. Using comprehensive linkage disequilibrium mapping, we genotyped tag single nucleotide polymorphisms (SNPs) in RETN and tested associations with plasma resistin levels, risk of diabetes, and glycemic traits. RESEARCH DESIGN AND METHODS— We examined 2,531 Framingham Offspring Study participants for resistin levels, glycemic phenotypes, and incident diabetes over 28 years of follow-up. We genotyped 21 tag SNPs that capture common (minor allele frequency >0.05) or previously reported SNPs at r2 > 0.8 across RETN and its flanking regions. We used sex- and age-adjusted linear mixed-effects models (with/without BMI adjustment) to test additive associations of SNPs with traits, adjusted Cox proportional hazards models accounting for relatedness for incident diabetes, and generated empirical P values (Pe) to control for type 1 error. RESULTS— Four tag SNPs (rs1477341, rs4804765, rs1423096, and rs10401670) on the 3′ side of RETN were strongly associated with resistin levels (all minor alleles associated with higher levels, Pe<0.05 after multiple testing correction). rs10401670 was also associated with fasting plasma glucose (Pe = 0.02, BMI adjusted) and mean glucose over follow-up (Pe = 0.01; BMI adjusted). No significant association was observed for adiposity traits. On meta-analysis, the previously reported association of SNP −420C/G (rs1862513) with resistin levels remained significant (P = 0.0009) but with high heterogeneity across studies (P < 0.0001). CONCLUSIONS— SNPs in the 3′ region of RETN are associated with resistin levels, and one of them is also associated with glucose levels, although replication is needed.


Diabetologia | 2009

TCF7L2 variants are associated with increased proinsulin/insulin ratios but not obesity traits in the Framingham Heart Study

Elliot S. Stolerman; Alisa K. Manning; Jarred B. McAteer; Caroline S. Fox; Josée Dupuis; James B. Meigs; Jose C. Florez

Aims/hypothesisCommon variants in the TCF7L2 gene are associated with type 2 diabetes via impaired insulin secretion. One hypothesis is that variation in TCF7L2 impairs insulin processing in the beta cell. In contrast, the association of related TCF7L2 polymorphisms with obesity is controversial in that it has only been shown in cohorts susceptible to ascertainment bias. We reproduced the association of diabetes-associated variants with proinsulin/insulin ratios, and also examined the association of a TCF7L2 haplotype with obesity in the Framingham Heart Study (FHS).MethodsWe genotyped the TCF7L2 single nucleotide polymorphisms rs7903146 and rs12255372 (previously associated with type 2 diabetes) and rs10885406 and rs7924080 (which tag haplotype A [HapA], a haplotype reported to be associated with obesity) in 2,512 FHS participants. We used age- and sex-adjusted linear mixed-effects models to test for association with glycaemic traits, proinsulin/insulin ratios and obesity measures.ResultsAs expected, the T risk allele of rs7903146 was associated with higher fasting plasma glucose (p = 0.01). T/T homozygotes had a 23.5% increase in the proinsulin/insulin ratio (p = 1 × 10−7) compared with C/C homozygotes. There was no association of HapA with BMI (p = 0.98), waist circumference (p = 0.89), subcutaneous adipose tissue (p = 0.32) or visceral adipose tissue (p = 0.92).Conclusions/interpretationWe confirmed that the risk allele of rs7903146 is associated with hyperglycaemia and a higher proinsulin/insulin ratio. We did not detect any association of the TCF7L2 HapA with adiposity measures, suggesting that this may have been a spurious association from ascertainment bias, possibly induced by the evaluation of obesity in separate groups of glycaemic cases and controls.


Diabetes | 2012

Association Testing of Previously Reported Variants in a Large Case–Control Meta-Analysis of Diabetic Nephropathy

Winfred W. Williams; Rany M. Salem; Amy Jayne McKnight; Niina Sandholm; Carol Forsblom; Andrew W. Taylor; Candace Guiducci; Jarred B. McAteer; Gareth J. McKay; Tamara Isakova; Eoin P. Brennan; Denise Sadlier; C. Palmer; Jenny Söderlund; Emma Fagerholm; Valma Harjutsalo; Raija Lithovius; Daniel Gordin; Kustaa Hietala; Janne P. Kytö; Maija Parkkonen; Milla Rosengård-Bärlund; Lena M. Thorn; Anna Syreeni; Nina Tolonen; Markku Saraheimo; Johan Wadén; Janne Pitkäniemi; Cinzia Sarti; Jaakko Tuomilehto

We formed the GEnetics of Nephropathy–an International Effort (GENIE) consortium to examine previously reported genetic associations with diabetic nephropathy (DN) in type 1 diabetes. GENIE consists of 6,366 similarly ascertained participants of European ancestry with type 1 diabetes, with and without DN, from the All Ireland-Warren 3-Genetics of Kidneys in Diabetes U.K. and Republic of Ireland (U.K.-R.O.I.) collection and the Finnish Diabetic Nephropathy Study (FinnDiane), combined with reanalyzed data from the Genetics of Kidneys in Diabetes U.S. Study (U.S. GoKinD). We found little evidence for the association of the EPO promoter polymorphism, rs161740, with the combined phenotype of proliferative retinopathy and end-stage renal disease in U.K.-R.O.I. (odds ratio [OR] 1.14, P = 0.19) or FinnDiane (OR 1.06, P = 0.60). However, a fixed-effects meta-analysis that included the previously reported cohorts retained a genome-wide significant association with that phenotype (OR 1.31, P = 2 × 10−9). An expanded investigation of the ELMO1 locus and genetic regions reported to be associated with DN in the U.S. GoKinD yielded only nominal statistical significance for these loci. Finally, top candidates identified in a recent meta-analysis failed to reach genome-wide significance. In conclusion, we were unable to replicate most of the previously reported genetic associations for DN, and significance for the EPO promoter association was attenuated.

Collaboration


Dive into the Jarred B. McAteer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline S. Fox

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven E. Kahn

University of Washington

View shared research outputs
Top Co-Authors

Avatar

William C. Knowler

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge