Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alison L. Galvin is active.

Publication


Featured researches published by Alison L. Galvin.


Clinical Orthopaedics and Related Research | 2004

Wear, debris, and biologic activity of cross-linked polyethylene in the knee : benefits and potential concerns

John Fisher; H.M.J. McEwen; Joanne L. Tipper; Alison L. Galvin; Jo Ingram; Amir Kamali; Martin H. Stone; Eileen Ingham

Cross-linked polyethylene currently is being introduced in knee prostheses. The wear rates, wear debris, and biologic reactivity of non cross-linked, moderately cross-linked, and highly cross-linked polyethylene have been compared in multidirectional wear tests and knee simulators. Multidirectional pin-on-plate wear studies of noncross-linked, moderately cross-linked (5 Mrad), and highly cross-linked (10 Mrad) polyethylene showed a 75% reduction in wear with the highly cross-linked material under kinematics found in the hip, but only a 33% reduction under wear in kinematics representative of the knee. In knee simulator studies, with the fixed-bearing press-fit, condylar Sigma cruciate-retaining knee under high kinematic input conditions, the wear of 5 Mrad moderately cross-linked polyethylene was 13 ± 4 mm3 per 1 million cycles, which was lower (p < 0.05) than the wear of clinically used, gamma vacuum foil GUR 1020 polyethylene (23 ± 6 mm3/1 million cycles). For the low-contact stress mobile-bearing knee, the wear of moderately cross-linked polyethylene was 2 ± 1 mm3 per 1 million cycles, which was lower (p < 0.05) than GVF GUR 1020 polyethylene (5 ± 2 mm3/1 million cycles). The wear debris isolated from the fixed-bearing knees showed the moderately cross-linked material had a larger percentage volume of particles smaller than 1 μm in size, compared with GVF GUR 1020 polyethylene. Direct cell culture studies of wear debris generated in sterile wear simulators using multidirectional motion showed a increase (p < 0.05) in tumor necrosis factor-alpha levels and reactivity for GUR 1050 cross-linked polyethylene debris compared with an equivalent volume of noncross-linked GUR 1050 polyethylene. The use of cross-linked polyethylene in the knee reduces the volumetric wear rate. However, the clinical significance of reduced fracture toughness, elevated wear in abrasive conditions, and the elevated tumor necrosis factor-alpha release from smaller more reactive particles warrant further investigation.


Journal of Biomechanics | 2009

Enhanced computational prediction of polyethylene wear in hip joints by incorporating cross-shear and contact pressure in additional to load and sliding distance: Effect of head diameter

Lu Kang; Alison L. Galvin; John Fisher; Zhongmin Jin

A new definition of the experimental wear factor was established and reported as a function of cross-shear motion and contact pressure using a multi-directional pin-on-plate wear testing machine for conventional polyethylene in the present study. An independent computational wear model was developed by incorporating the cross-shear motion and contact pressure-dependent wear factor into the Archards law, in additional to load and sliding distance. The computational prediction of wear volume was directly compared with a simulator testing of a polyethylene hip joint with a 28 mm diameter. The effect of increasing the femoral head size was subsequently considered and was shown to increase wear, as a result of increased sliding distance and reduced contact pressure.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2007

Wear and biological activity of highly crosslinked polyethylene in the hip under low serum protein concentrations.

Alison L. Galvin; Joanne L. Tipper; Louise Jennings; Martin H. Stone; Z M Jin; Eileen Ingham; John Fisher

Abstract Crosslinked ultra-high molecular weight polyethylene (UHMWPE) has been developed and introduced into clinical practice in order to reduce wear in the hip. Zero wear of highly crosslinked UHMWPE in vitro has been reported by some groups using lubricants with high concentrations of serum proteins in hip simulators. In contrast, some clinical studies have reported finite wear rates. The aim of this study was to compare the wear rates, wear surfaces, and wear debris produced by UHMWPE with different levels of crosslinking in a hip joint simulator, with lower, more physiologically relevant concentrations of protein in the lubricant. The UHMWPEs were tested in the Leeds ProSim hip joint simulator against cobalt-chromium (CoCr) femoral heads. The wear particles were isolated and imaged using a field emission gun scanning electron microscope (FEGSEM) at high resolution. The highly crosslinked UHMWPEs had significantly lower wear volumes than the non-crosslinked UHMWPEs. No significant difference was found in the percentage number and percentage volume of the particles in different size ranges from any of the materials. They had similar values of specific biological activity. The functional biological activity (FBA), which takes into account the wear volume and specific biological activity, showed that the highly crosslinked UHMWPEs had lower FBAs due to their lower wear volume.


Clinical Orthopaedics and Related Research | 2010

2009 Knee Society Presidential Guest Lecture: Polyethylene Wear in Total Knees

John Fisher; Louise Jennings; Alison L. Galvin; Z M Jin; Martin H. Stone; Eileen Ingham

Knee arthroplasties in young and active patients place a substantial increase in the lifetime tribological demand and potential for wear-induced osteolysis. Polyethylene materials have advanced in recent years, reducing the potential for oxidative degradation and delamination failure. It is timely to consider tribological design variables and their potential to reduce surface wear and the long-term risk of osteolysis. The influence of reduced cross shear in rotating platform mobile-bearing knee designs and reduced surface wear area in low conforming fixed-bearing knees has been investigated. A reduction in cross shear substantially reduced wear in both multidirectional pin-on-plate studies and in rotating platform mobile-bearing designs in knee simulator studies. A reduction in bearing surface contact area substantially reduced surface wear in multidirectional pin-on-plate simulations and in low conforming fixed-bearing knee designs in knee simulator studies. This offers potential for a paradigm shift in knee design predicated by enhanced mechanical properties of new polymer materials. We describe two distinct low-wearing tribological design solutions: (1) a rotating platform design solution with reduced cross shear provides reduced wear with conformity and intrinsic stability; and (2) a low conformity fixed bearing with reduced surface area, provides reduced wear, but has less intrinsic stability and requires good soft tissue function.


Journal of Biomechanics | 2009

Effect of conformity and contact stress on wear in fixed-bearing total knee prostheses

Alison L. Galvin; Lu Kang; Itoro Udofia; Louise Jennings; H.M.J. McEwen; Zhongmin Jin; John Fisher

Ultra high molecular weight polyethylene (PE) remains the primary bearing surface of choice in total knee replacements (TKR). Wear is controlled by levels of cross-shear motion and contact stress. The aim of this study was to compare the wear of fixed-bearing total knee replacements with curved and flat inserts and to test the hypothesis that the flat inserts which give higher contact stresses and smaller contact areas would lead to lower levels of surface wear. A low-conforming, high contact stress knee with a low-medium level of cross shear resulted in significantly lower wear rates in comparison to a standard cruciate sacrificing fixed-bearing knee. The low wear solution found in the knee simulator was supported by fundamental studies of wear as a function of pressure and cross shear in the pin on plate system. Current designs of fixed-bearing knees do not offer this low wear solution due to their medium cross shear, moderate conformity and medium contact stress.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2008

Wear simulation of ultra-high molecular weight polyethylene hip implants by incorporating the effects of cross-shear and contact pressure.

Lu Kang; Alison L. Galvin; Thomas D. Brown; John Fisher; Z M Jin

The effect of multi-directional cross-shear (CS) motion and contact pressure on ultra-high molecular weight polyethylene (UHMWPE) wear was investigated in this study, based on an integrated experimental and computational approach. The wear factor as a function of CS was determined experimentally from a multi-directional pin-on-plate wear tester under a nominal contact pressure of 1 MPa. A computational wear model was developed which included the effects of CS as well as the load and sliding distance imposed on the hip joint employing a UHMWPE cup against a metallic femoral head under both gait and Leeds ProSim hip joint simulator conditions. The CS ratios were quantified over the articular surface of the UHMWPE cup and the CS-dependent wear factors derived from multi-directional pin-on-plate studies were applied in the computational wear model. Outputs from the computational wear model were validated independently against an experimental hip simulator study. Comparisons of linear and volumetric wear were made between the computational wear model and the hip simulator testing for a nominal conventional (0 MRad) UHMWPE cup of 28 mm diameter and a highly cross-linked (10 MRad) UHMWPE cup. The difference between the computed and experimental volumetric wear was approximately 30 per cent for the 0 MRad UHMWPE, although the worn areas between the prediction and the measurement were similar. For the 10 MRad UHMWPE, the discrepancy was reduced to 16 per cent. In both cases, the computational model predicted a lower wear rate than the experimental simulator testing. The effect of using alternative wear factors under a different nominal contact pressure of 3 MPa was also considered. The input wear factor to the computational model, derived from a constant loaded pin-on-plate test configuration, may underestimate the dynamic effect due to the variation in the load in the hip joint simulator.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2006

A simple fully integrated contact-coupled wear prediction for ultra-high molecular weight polyethylene hip implants.

Lu Kang; Alison L. Galvin; Z M Jin; John Fisher

Abstract A fully coupled contact and wear model was developed in the present study for hip implants employing an ultra-high molecular weight polyethylene (UHMWPE) cup in combination with a metallic or ceramic femoral head. A simple elasticity equation based on the concept of constrained column model was employed to solve the contact mechanics between the acetabular cup and the femoral head under the three-dimensional physiological loading condition. The wear model was based on the classical Archard—Lancaster equation in common with all other studies reported in the literature. The fully coupled contact and wear model was applied to both conventional and cross-linked UHMWPE cups under a wide range of design parameters such as the clearance and the femoral head radius. The predicted linear and volumetric wear as well as their rates for conventional UHMWPE cups were found to be in good agreement with those obtained from a similar analysis by Maxian but using the finite element method for the contact mechanics analysis. The predicted maximum contact pressure was found to decrease rapidly within the first 106 cycles, and below the limit to cause plastic deformation within the UHMWPE cup with a nominal radial clearance of 0.2 mm. The effect of the clearance between the head and the cup on the predicted wear was found to be negligible. For the cross-linked UHMWPE cup with relatively large diameters up to 48 mm and a fixed outside diameter of 50 mm, the predicted wear, which was found to increase with increasing femoral head radius, remained small owing to the small wear factor associated with these materials. Furthermore, if the head diameter increases beyond 42 mm, a rapid increase in the contact pressure was predicted, owing to the decrease in the wall thickness of the cross-linked UHMWPE cup.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2011

A new formulation for the prediction of polyethylene wear in artificial hip joints.

Feng Liu; Alison L. Galvin; Zhongmin Jin; John Fisher

Artificial joints employing ultra-high molecular weight polyethylene (UHMWPE) are widely used to treat joint diseases and trauma. Wear of the polymer bearing surface largely limits the use of these joints in younger and more active patients. Previous studies have shown the wear factor used in Archards law for the conventional polyethylene to be highly dependent on contact pressure and this has produced variability in experimental data and has constrained the reliability and applicability of previous computational predictions. A new wear law is proposed, based on wear volume being dependent on, and proportional to, the product of the sliding distance and contact area. The dimensionless proportional constant, wear coefficient, which was independent of contact pressure, was determined from a multi-directional pin on plate study. This was used in computational predictions of the wear of the conventional UHMWPE hip joints. The wear of the polyethylene cup was independently experimentally determined in physiological full hip joint simulator studies. The predicted wear rate from the new computational model was generally increased, with an improved agreement with the experimental measurement compared with the previous computational model. It was shown that wear in the UHMWPE hip joints increased as head size and contact area increased. This resulted in a much larger increase in the wear rate as the head size increased, compared with the previous computational model, and is consistent with clinical observations. This new understanding of the wear mechanism in artificial joints using the UHMWPE bearing surfaces, and the improved ability to predict wear independently and to address previously described discrepancies offer new opportunities to optimize design parameters.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2010

Wear and Creep of Highly Crosslinked Polyethylene against Cobalt Chrome and Ceramic Femoral Heads

Alison L. Galvin; Louise Jennings; Joanne L. Tipper; Eileen Ingham; John Fisher

The wear and creep characteristics of highly crosslinked ultrahigh-molecular-weight polyethylene (UHMWPE) articulating against large-diameter (36 mm) ceramic and cobalt chrome femoral heads have been investigated in a physiological anatomical hip joint simulator for 10 million cycles. The crosslinked UHMWPE/ceramic combination showed higher volume deformation due to creep plus wear during the first 2 million cycles, and a steady-state wear rate 40 per cent lower than that of the crosslinked UHMWPE/cobalt chrome combination. Wear particles were isolated and characterized from the hip simulator lubricants. The wear particles were similar in size and morphology for both head materials. The particle isolation methodology used could not detect a statistically significant difference between the particles produced by the cobalt chrome and alumina ceramic femoral heads.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2008

Comparison of wear of ultra-high molecular weight polyethylene acetabular cups against surface-engineered femoral heads.

Alison L. Galvin; Claire Brockett; Sophie Williams; Peter Hatto; Andrew Burton; Graham Isaac; Martin H. Stone; Eileen Ingham; John Fisher

Alumina ceramic heads have been previously shown to reduce polyethylene wear in comparison to cobalt chrome (CoCr) heads in artificial hip joints. However, there are concerns about the brittle nature of ceramics. It is therefore of interest to investigate ceramic-like coatings on metallic heads. The aim of this study was to compare the friction and wear of ultra-high molecular weight polyethylene (UHMWPE) against alumina ceramic, CoCr, and surface-engineered ceramic-like coatings in a friction simulator and a hip joint simulator. All femoral heads tested were 28 mm diameter and included: Biolox™ Forte alumina, CoCr, arc evaporative physical vapour deposition (AEPVD) chromium nitride (CrN) coated CoCr, plasma-assisted chemical vapour deposition (PACVD) amorphous diamond-like carbon (aDLC) coated CoCr, sputter CrN coated CoCr, reactive gas controlled arc (RGCA) AEPVD titanium nitride (TiN) coated CoCr, and Graphit-iC™ coated CoCr. These were articulated against UHMWPE acetabular cups in a friction simulator and a hip joint simulator. Alumina and CoCr gave the lowest wear volumes whereas the sputter coated CrN gave the highest. Alumina also had the lowest friction factor. There was an association between surface parameters and wear. This study indicates that surface topography of surface-engineered femoral heads is more important than friction and wettability in controlling UHMWPE wear.

Collaboration


Dive into the Alison L. Galvin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge