Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Z M Jin is active.

Publication


Featured researches published by Z M Jin.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 1997

Analysis of fluid film lubrication in artificial hip joint replacements with surfaces of high elastic modulus

Z M Jin; D. Dowson; John Fisher

Abstract Lubrication mechanisms and contact mechanics have been analysed for total hip joint replacements made from hard bearing surfaces such as metal-on-metal and ceramic-on-ceramic. A similar analysis for ultra-high molecular weight polyethylene (UHMWPE) against a hard bearing surface has also been carried out and used as a reference. The most important factor influencing the predicted lubricating film thickness has been found to be the radial clearance between the ball and the socket. Full fluid film lubrication may be achieved in these hard/hard bearings provided that the surface finish of the bearing surface and the radial clearance are chosen correctly and maintained. Furthermore, there is a close relation between the predicted contact half width and the predicted lubricating film thickness. Therefore, it is important to analyse the contact mechanics in artificial hip joint replacements. Practical considerations of manufacturing these bearing surfaces have also been discussed.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2002

Effect of microseparation on contact mechanics in ceramic-on-ceramic hip joint replacements

M M Mak; A. A. Besong; Z M Jin; John Fisher

Abstract The contact mechanics in ceramic-on-ceramic hip implants are investigated in this study under the microseparation condition where the edge contact occurs between the superolateral rim of the acetabular cup and the femoral head. A three-dimensional finite element model is developed to examine the effect of the microseparation distance between the femoral head and the acetabular cup on the contact area and contact stresses between the bearing surfaces. It is shown that microseparation leads to edge contact and elevated contact stresses, and these are mainly dependent on the magnitude of separation, the radial clearance between the femoral head and the acetabular cup, and the cup inclination angle. For a small microseparation distance (less than the diametrical clearance), the contact occurs within the acetabular cup, and consequently an excellent agreement of the predicted contact pressure distribution is obtained between the present three-dimensional anatomical model and a simple two-dimensional axisymmetric model adopted in a previous study [5]. However, as microsegregation is increased further, edge contact between the superolateral rim and the femoral head occurs. Consequently, the predicted contact pressure is significantly increased. The corresponding contact area resembles closely the stripe wear pattern observed on both clinically retrieved and simulator-tested ceramic femoral heads [8, 9, 11]. Furthermore, introducing a fillet radius of 2.5 mm at the mouth of the acetabular cup is shown to reduce the contact stress due to edge contact, but only under relatively large microseparation distances.


Osteoarthritis and Cartilage | 2009

Influence of the meniscus on friction and degradation of cartilage in the natural knee joint.

L. McCann; Eileen Ingham; Z M Jin; John Fisher

BACKGROUND Total meniscectomy has been shown to cause early-onset arthritis in the underlying cartilage and bone in the knee joint, demonstrating that the meniscus plays an important protective role in the load carrying capacity. Relationships between friction and wear in synovial joints are complex due to the biphasic nature of articular cartilage and the time dependency of tribological responses. Determination of friction and wear in the whole natural joint in vitro or in vivo is technically difficult and the tribological effect of meniscectomy has not been previously studied in an articulating knee joint. OBJECTIVE The aim of this study was to use a tribological simulation of the medial compartmental bovine knee, to investigate friction and wear, with and without the meniscus. We hypothesised that meniscectomy would lead to elevated contact stress and frictional coefficient across the joint. METHODS Skeletally mature bovine medial compartmental knee joints were dissected and mounted in a pendulum friction simulator, which was used to apply physiologically relevant loading and motion. Wear was quantified using micro-MRI scans and surface profilometry. RESULTS Knees tested with the intact meniscus showed no change in surface roughness and no detectable cartilage loss or deformation. However, increased contact stress and frictional coefficient upon removal of the meniscus, led to immediate surface fibrillation, biomechanical wear and permanent deformation of cartilage. CONCLUSIONS This study presents, for the first time, an in vitro model simulation system to investigate the tribological effects of meniscectomy and meniscus repair and regeneration.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2007

Wear and biological activity of highly crosslinked polyethylene in the hip under low serum protein concentrations.

Alison L. Galvin; Joanne L. Tipper; Louise Jennings; Martin H. Stone; Z M Jin; Eileen Ingham; John Fisher

Abstract Crosslinked ultra-high molecular weight polyethylene (UHMWPE) has been developed and introduced into clinical practice in order to reduce wear in the hip. Zero wear of highly crosslinked UHMWPE in vitro has been reported by some groups using lubricants with high concentrations of serum proteins in hip simulators. In contrast, some clinical studies have reported finite wear rates. The aim of this study was to compare the wear rates, wear surfaces, and wear debris produced by UHMWPE with different levels of crosslinking in a hip joint simulator, with lower, more physiologically relevant concentrations of protein in the lubricant. The UHMWPEs were tested in the Leeds ProSim hip joint simulator against cobalt-chromium (CoCr) femoral heads. The wear particles were isolated and imaged using a field emission gun scanning electron microscope (FEGSEM) at high resolution. The highly crosslinked UHMWPEs had significantly lower wear volumes than the non-crosslinked UHMWPEs. No significant difference was found in the percentage number and percentage volume of the particles in different size ranges from any of the materials. They had similar values of specific biological activity. The functional biological activity (FBA), which takes into account the wear volume and specific biological activity, showed that the highly crosslinked UHMWPEs had lower FBAs due to their lower wear volume.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 1993

Friction and Lubrication in Cushion Form Bearings for Artificial Hip Joints

Daniel D. Auger; D. Dowson; John Fisher; Z M Jin

Two hip joint prostheses were designed and constructed to be elastohydrodynamically equivalent producing approximately equal initial contact areas and theoretical film thicknesses. One was made from conventional UHMWPE (ultra-high molecular weight polyethylene) and the other was a cushion component which had a low modulus layer introduced into the joint space. Friction measurements were carried out on a pendulum simulator apparatus and the two joints were compared. In addition the experimental results were compared with theoretical values of friction predicted from elastohydrodynamic lubrication theory. Values for the friction factor at peak load and peak velocity in the cushion cup (0.003–0.009) were much lower than in the UHMWPE cup (0.017–0.042). The low friction values in the cushion cup are consistent with fluid film lubrication in the contact with the thin lubricating film being preserved by microelastohydrodynamic action.


Clinical Orthopaedics and Related Research | 2010

2009 Knee Society Presidential Guest Lecture: Polyethylene Wear in Total Knees

John Fisher; Louise Jennings; Alison L. Galvin; Z M Jin; Martin H. Stone; Eileen Ingham

Knee arthroplasties in young and active patients place a substantial increase in the lifetime tribological demand and potential for wear-induced osteolysis. Polyethylene materials have advanced in recent years, reducing the potential for oxidative degradation and delamination failure. It is timely to consider tribological design variables and their potential to reduce surface wear and the long-term risk of osteolysis. The influence of reduced cross shear in rotating platform mobile-bearing knee designs and reduced surface wear area in low conforming fixed-bearing knees has been investigated. A reduction in cross shear substantially reduced wear in both multidirectional pin-on-plate studies and in rotating platform mobile-bearing designs in knee simulator studies. A reduction in bearing surface contact area substantially reduced surface wear in multidirectional pin-on-plate simulations and in low conforming fixed-bearing knee designs in knee simulator studies. This offers potential for a paradigm shift in knee design predicated by enhanced mechanical properties of new polymer materials. We describe two distinct low-wearing tribological design solutions: (1) a rotating platform design solution with reduced cross shear provides reduced wear with conformity and intrinsic stability; and (2) a low conformity fixed bearing with reduced surface area, provides reduced wear, but has less intrinsic stability and requires good soft tissue function.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2006

The role of the surface amorphous layer of articular cartilage in joint lubrication.

S Graindorge; W Ferrandez; Eileen Ingham; Z M Jin; Peter C. Twigg; John Fisher

Abstract Articular cartilage is a complex soft tissue that performs multiple functions in the joint. In particular, the amorphous layer that covers the surface of articular cartilage is thought to play some role in lubrication. This study aimed to characterize the surface amorphous layer (SAL) using a variety of techniques, including environmental scanning electron microscopy, transmission electron microscopy, white light interferometry, and biochemical analysis of its composition. Friction tests were conducted to investigate the role of the SAL in lubrication. A protocol to remove successfully the SAL without damaging the underlying cartilage was developed and the material removed from healthy cartilage was found to contain approximately equal quantities of glycosaminoglycan (GAG), protein, and lipid. Cartilage-on-cartilage friction tests were conducted on fresh, healthy cartilage with and without the SAL, under both dynamic and static operating conditions. Removal of the SAL was not found to change the friction coefficient. However, subsequent staining of specimens indicated that the SAL had replenished during the test following loading. The replenished SAL was characterized and found to contain lipids and sulphated GAGs with undetectable protein. This study revealed experimental evidence of surface layer replenishment in articular cartilage. It was postulated that the surface layer regeneration mechanism was purely mechanical and associated with movement of GAGs and lipids through the cartilage matrix during deformation, since the experimental set-up did not contain any means of biochemical activation.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2008

Wear simulation of ultra-high molecular weight polyethylene hip implants by incorporating the effects of cross-shear and contact pressure.

Lu Kang; Alison L. Galvin; Thomas D. Brown; John Fisher; Z M Jin

The effect of multi-directional cross-shear (CS) motion and contact pressure on ultra-high molecular weight polyethylene (UHMWPE) wear was investigated in this study, based on an integrated experimental and computational approach. The wear factor as a function of CS was determined experimentally from a multi-directional pin-on-plate wear tester under a nominal contact pressure of 1 MPa. A computational wear model was developed which included the effects of CS as well as the load and sliding distance imposed on the hip joint employing a UHMWPE cup against a metallic femoral head under both gait and Leeds ProSim hip joint simulator conditions. The CS ratios were quantified over the articular surface of the UHMWPE cup and the CS-dependent wear factors derived from multi-directional pin-on-plate studies were applied in the computational wear model. Outputs from the computational wear model were validated independently against an experimental hip simulator study. Comparisons of linear and volumetric wear were made between the computational wear model and the hip simulator testing for a nominal conventional (0 MRad) UHMWPE cup of 28 mm diameter and a highly cross-linked (10 MRad) UHMWPE cup. The difference between the computed and experimental volumetric wear was approximately 30 per cent for the 0 MRad UHMWPE, although the worn areas between the prediction and the measurement were similar. For the 10 MRad UHMWPE, the discrepancy was reduced to 16 per cent. In both cases, the computational model predicted a lower wear rate than the experimental simulator testing. The effect of using alternative wear factors under a different nominal contact pressure of 3 MPa was also considered. The input wear factor to the computational model, derived from a constant loaded pin-on-plate test configuration, may underestimate the dynamic effect due to the variation in the load in the hip joint simulator.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 1995

Experimental and Theoretical Study of the Contact Mechanics of Five Total Knee Joint Replacements

Todd Stewart; Z M Jin; David Shaw; Daniel D. Auger; Martin H. Stone; John Fisher

The tibio-femoral contact area in five current popular total knee joint replacements has been measured using pressure-sensitive film under a normal load of 2.5 kN and at several angles of flexion The corresponding maximum contact pressure has been estimated from the measured contact areas and found to exceed the point at which plastic deformation is expected in the ultra-high molecular weight polyethylene (UHMWPE) component particularly at flexion angles near 90°. The measured contact area and the estimated maximum contact stress have been found to be similar in magnitude for all of the five knee joint replacements tested. A significant difference, however, has been found in maximum contact pressure predicted from linear elasticity analysis for the different knee joints. This indicates that varying amounts of plastic deformation occurred in the polyethylene component in the different knee designs. It is important to know the extent of damage as knees with large amounts of plastic deformation are more likely to suffer low cycle fatigue failure. It is therefore concluded that the measurement of contact areas alone can be misleading in the design of and deformation in total knee joint replacements. It is important to modify geometries to reduce the maximum contact stress as predicted from the linear elasticity analysis, to below the linear elastic limit of the plastic component.


Medical Engineering & Physics | 1994

A parametric analysis of the contact stress in ultra-high molecular weight polyethylene acetabular cups

Z M Jin; D. Dowson; John Fisher

It is well known that the wear factor for ultra-high molecular weight polyethylene (UHMWPE) sliding on metallic or ceramic counterfaces is largely independent of contact stress for modest loading conditions and sliding distances. However, it is now recognized that under more severe stress levels and with sliding distances comparable to those encountered in current replacement synovial joints, subsurface fatigue contributes to the volume of wear debris. Since the fatigue process is influenced by surface stress levels it is becoming increasingly important to limit the contact stress through design in order to minimize the volume of UHMWPE wear debris in implants. The contact pressure in UHMWPE acetabular cups has been predicted using both the simple elasticity analysis and the finite element method. It has been shown that the radial clearance between the femoral head and the socket is the dominant parameter in determining the contact stress. Thus, the radial clearance should be controlled so the contact half width is close to the femoral head radius (a total included angle of contact of 120 degrees) to minimize the contact pressure. There is little benefit to be gained by increasing the contact half width greater than the femoral head radius. This is consistent with the geometrical constraint of the anatomical position and the direction of loading. It has been shown that the radius of the femoral head has the most significant effect on the maximum contact pressure for these closely conforming contacts where the contact half width is close to the femoral head radius. The effect of the elastic modulus and the thickness of UHMWPE is relatively small under these contact conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

Collaboration


Dive into the Z M Jin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge