Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alla Gagarinova is active.

Publication


Featured researches published by Alla Gagarinova.


Nature Methods | 2008

eSGA: E. coli Synthetic Genetic Array analysis

Gareth Butland; Mohan Babu; J. Javier Díaz-Mejía; Fedyshyn Bohdana; Sadhna Phanse; Barbara Gold; Wenhong Yang; Joyce Li; Alla Gagarinova; Oxana Pogoutse; Hirotada Mori; Barry L. Wanner; Henry Lo; Jas Wasniewski; Constantine C. Christopoulos; Mehrab Ali; Pascal Venn; Anahita Safavi-Naini; Natalie Sourour; Simone Caron; Ja-Yeon Choi; Ludovic Laigle; Anaies Nazarians-Armavil; Avnish Deshpande; Sarah Joe; Kirill A. Datsenko; Natsuko Yamamoto; Brenda Andrews; Charles Boone; Huiming Ding

Physical and functional interactions define the molecular organization of the cell. Genetic interactions, or epistasis, tend to occur between gene products involved in parallel pathways or interlinked biological processes. High-throughput experimental systems to examine genetic interactions on a genome-wide scale have been devised for Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans and Drosophila melanogaster, but have not been reported previously for prokaryotes. Here we describe the development of a quantitative screening procedure for monitoring bacterial genetic interactions based on conjugation of Escherichia coli deletion or hypomorphic strains to create double mutants on a genome-wide scale. The patterns of synthetic sickness and synthetic lethality (aggravating genetic interactions) we observed for certain double mutant combinations provided information about functional relationships and redundancy between pathways and enabled us to group bacterial gene products into functional modules.NOTE: In the version of this article initially published online two author names (Gabriel Moreno-Hagelseib and Constantine Christopolous) were spelled incorrectly. The correct author names are Gabriel Moreno-Hagelsieb and Constantine Christopoulos. The error has been corrected for the print, PDF and HTML versions of this article.


Molecular Microbiology | 2011

A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair

Mohan Babu; Natalia Beloglazova; Robert Flick; Chris Graham; Tatiana Skarina; Boguslaw Nocek; Alla Gagarinova; Oxana Pogoutse; Greg Brown; Andrew Binkowski; Sadhna Phanse; Andrzej Joachimiak; Eugene V. Koonin; Alexei Savchenko; Andrew Emili; Jack Greenblatt; A. Edwards; Alexander F. Yakunin

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR‐associated protein that is common to all CRISPR‐containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single‐stranded and branched DNAs including Holliday junctions, replication forks and 5′‐flaps. The crystal structure of YgbT and site‐directed mutagenesis have revealed the potential active site. Genome‐wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR–Cas system have a function in DNA repair.


Journal of General Virology | 2008

Association of the transcriptional response of soybean plants with soybean mosaic virus systemic infection

Mohan Babu; Alla Gagarinova; James E. Brandle; Aiming Wang

Compatible virus infection induces and suppresses host gene expression at the global level. These gene-expression changes are the molecular basis of symptom development and general stress and defence-like responses of the host. To assess transcriptional changes in soybean plants infected with soybean mosaic virus (SMV), the first soybean trifoliate leaf, immediately above the SMV-inoculated unifoliate leaf, was sampled at 7, 14 and 21 days post-inoculation (p.i.) and subjected to microarray analysis. The identified changes in gene expression in soybean leaves with SMV infection at different time points were associated with the observed symptom development. By using stringent selection criteria (>or=2- or <or=-2-fold change and a Q value of <or=0.05), 273 (1.5 %) and 173 (0.9 %) transcripts were identified to be up- and downregulated, respectively, from 18 613 soybean cDNAs on the array. The expression levels of many transcripts encoding proteins for hormone metabolism, cell-wall biogenesis, chloroplast functions and photosynthesis were repressed at 14 days p.i. and were associated with the highest levels of viral RNA in the host cells. A number of transcripts corresponding to genes involved in defence were either downregulated or not affected at the early stages of infection, but upregulated at the late stages, indicating that the plant immune response is not activated until the late time points of infection. Such a delayed defence response may be critical for SMV to establish its systemic infection.


PLOS Genetics | 2011

Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

Mohan Babu; J. Javier Díaz-Mejía; James Vlasblom; Alla Gagarinova; Sadhna Phanse; Chris Graham; Fouad Yousif; Huiming Ding; Xuejian Xiong; Anaies Nazarians-Armavil; Alamgir; Mehrab Ali; Oxana Pogoutse; Asaf Peer; Roland Arnold; Magali Michaut; John Parkinson; Ashkan Golshani; Chris Whitfield; Gabriel Moreno-Hagelsieb; Jack Greenblatt; Andrew Emili

As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target.


Virus Research | 2008

Identification and molecular characterization of two naturally occurring Soybean mosaic virus isolates that are closely related but differ in their ability to overcome Rsv4 resistance

Alla Gagarinova; Mohan Babu; Vaino Poysa; John H. Hill; Aiming Wang

A naturally occurring Rsv4 resistance-breaking isolate (L-RB) and a closely related non-resistance-breaking isolate (L) of Soybean mosaic virus (SMV) were identified in soybean fields in London, Ontario, Canada. The viral genomes of L and L-RB were completely sequenced. Each isolate has a 9585-nucleotide genome with a single open reading frame encoding a polyprotein of approximately 350 kDa. L-RB and L have a very high sequence similarity (99.6%) at both the nucleotide and amino acid levels. Phylogenetic analysis showed that the two isolates belong to the G2 pathotype. Pathogenicity predictions of all virus/soybean combinations, based on the phylogenetic profile, were confirmed by pathogenicity tests using L and L-RB isolates and soybeans carrying different resistance genes, with an exception that L-RB infected a soybean cultivar carrying Rsv4 resistance. The temporal and spatial proximity of L and L-RB and their high sequence similarity suggest L-RB was likely derived from the SMV-L quasispecies. Recombination analysis did not reveal the evidence of genetic recombination for the emergence of L-RB. Mutations introduced by virus-encoded RNA-dependent RNA polymerase during viral genome replication and selection pressure probably contributed to the occurrence of L-RB.


Virology Journal | 2008

Recombination Analysis of Soybean Mosaic Virus Sequences Reveals Evidence of RNA Recombination between Distinct Pathotypes

Alla Gagarinova; Mohan Babu; Martina V. Strömvik; Aiming Wang

RNA recombination is one of the two major factors that create RNA genome variability. Assessing its incidence in plant RNA viruses helps understand the formation of new isolates and evaluate the effectiveness of crop protection strategies. To search for recombination in Soybean mosaic virus (SMV), the causal agent of a worldwide seed-borne, aphid-transmitted viral soybean disease, we obtained all full-length genome sequences of SMV as well as partial sequences encoding the N-terminal most (P1 protease) and the C-terminal most (capsid protein; CP) viral protein. The sequences were analyzed for possible recombination events using a variety of automatic and manual recombination detection and verification approaches. Automatic scanning identified 3, 10, and 17 recombination sites in the P1, CP, and full-length sequences, respectively. Manual analyses confirmed 10 recombination sites in three full-length SMV sequences. To our knowledge, this is the first report of recombination between distinct SMV pathotypes. These data imply that different SMV pathotypes can simultaneously infect a host cell and exchange genetic materials through recombination. The high incidence of SMV recombination suggests that recombination plays an important role in SMV evolution. Obtaining additional full-length sequences will help elucidate this role.


Bioinformatics | 2015

Novel function discovery with GeneMANIA: a new integrated resource for gene function prediction in Escherichia coli

James Vlasblom; Khalid Zuberi; Harold Rodriguez; Roland Arnold; Alla Gagarinova; Viktor Deineko; Ashwani Kumar; Elisa Leung; Kamran Rizzolo; Bahram Samanfar; Luke Chang; Sadhna Phanse; Ashkan Golshani; Jack Greenblatt; Walid A. Houry; Andrew Emili; Quaid Morris; Gary D. Bader; Mohan Babu

MOTIVATION The model bacterium Escherichia coli is among the best studied prokaryotes, yet nearly half of its proteins are still of unknown biological function. This is despite a wealth of available large-scale physical and genetic interaction data. To address this, we extended the GeneMANIA function prediction web application developed for model eukaryotes to support E.coli. RESULTS We integrated 48 distinct E.coli functional interaction datasets and used the GeneMANIA algorithm to produce thousands of novel functional predictions and prioritize genes for further functional assays. Our analysis achieved cross-validation performance comparable to that reported for eukaryotic model organisms, and revealed new functions for previously uncharacterized genes in specific bioprocesses, including components required for cell adhesion, iron-sulphur complex assembly and ribosome biogenesis. The GeneMANIA approach for network-based function prediction provides an innovative new tool for probing mechanisms underlying bacterial bioprocesses. CONTACT [email protected]; [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Molecular BioSystems | 2012

Genome-scale genetic manipulation methods for exploring bacterial molecular biology.

Alla Gagarinova; Andrew Emili

Bacteria are diverse and abundant, playing key roles in human health and disease, the environment, and biotechnology. Despite progress in genome sequencing and bioengineering, much remains unknown about the functional organization of prokaryotes. For instance, roughly a third of the protein-coding genes of the best-studied model bacterium, Escherichia coli, currently lack experimental annotations. Systems-level experimental approaches for investigating the functional associations of bacterial genes and genetic structures are essential for defining the fundamental molecular biology of microbes, preventing the spread of antibacterial resistance in the clinic, and driving the development of future biotechnological applications. This review highlights recently introduced large-scale genetic manipulation and screening procedures for the systematic exploration of bacterial gene functions, molecular relationships, and the global organization of bacteria at the gene, pathway, and genome levels.


Cell Reports | 2016

Conditional Epistatic Interaction Maps Reveal Global Functional Rewiring of Genome Integrity Pathways in Escherichia coli

Ashwani Kumar; Natalia Beloglazova; Cedoljub Bundalovic-Torma; Sadhna Phanse; Viktor Deineko; Alla Gagarinova; Gabriel Musso; James Vlasblom; Sofia Lemak; Mohsen Hooshyar; Zoran Minic; Omar Wagih; Roberto Mosca; Patrick Aloy; Ashkan Golshani; John Parkinson; Andrew Emili; Alexander F. Yakunin; Mohan Babu

As antibiotic resistance is increasingly becoming a public health concern, an improved understanding of the bacterial DNA damage response (DDR), which is commonly targeted by antibiotics, could be of tremendous therapeutic value. Although the genetic components of the bacterial DDR have been studied extensively in isolation, how the underlying biological pathways interact functionally remains unclear. Here, we address this by performing systematic, unbiased, quantitative synthetic genetic interaction (GI) screens and uncover widespread changes in the GI network of the entire genomic integrity apparatus of Escherichia coli under standard and DNA-damaging growth conditions. The GI patterns of untreated cultures implicated two previously uncharacterized proteins (YhbQ and YqgF) as nucleases, whereas reorganization of the GI network after DNA damage revealed DDR roles for both annotated and uncharacterized genes. Analyses of pan-bacterial conservation patterns suggest that DDR mechanisms and functional relationships are near universal, highlighting a modular and highly adaptive genomic stress response.


Methods of Molecular Biology | 2011

Array-Based Synthetic Genetic Screens to Map Bacterial Pathways and Functional Networks in Escherichia coli

Mohan Babu; Alla Gagarinova; Jack Greenblatt; Andrew Emili

Cellular processes are carried out through a series of molecular interactions. Various experimental approaches can be used to investigate these functional relationships on a large-scale. Recently, the power of investigating biological systems from the perspective of genetic (gene-gene or epistatic) interactions has been evidenced by the ability to elucidate novel functional relationships. Examples of functionally related genes include genes that buffer each others function or impinge on the same biological process. Genetic interactions have traditionally been investigated in bacteria by combining pairs of mutations (e.g., gene deletions) and assessing deviation of the phenotype of each double mutant from an expected neutral (or no interaction) phenotype. Fitness is a particularly convenient phenotype to measure: when the double mutant grows faster or slower than expected, the two mutated genes are said to show alleviating or aggravating interactions, respectively. The most commonly used neutral model assumes that the fitness of the double mutant is equal to the product of individual single mutant fitness. A striking genetic interaction is exemplified by the loss of two nonessential genes that buffer each other in performing an essential biological function: deleting only one of these genes produces no detectable fitness defect; however, loss of both genes simultaneously results in systems failure, leading to synthetic sickness or lethality. Systematic large-scale genetic interaction screens have been used to generate functional maps for model eukaryotic organisms, such as yeast, to describe the functional organization of gene products into pathways and protein complexes within a cell. They also reveal the modular arrangement and cross talk of pathways and complexes within broader functional neighborhoods (Dixon et al., Annu Rev Genet 43:601-625, 2009). Here, we present a high-throughput quantitative Escherichia coli Synthetic Genetic Array (eSGA) screening procedure, which we developed to systematically infer genetic interactions by scoring growth defects among large numbers of double mutants in a classic Gram-negative bacterium. The eSGA method exploits the rapid colony growth, ease of genetic manipulation, and natural efficient genetic exchange via conjugation of laboratory E. coli strains. Replica pinning is used to grow and mate arrayed sets of single gene mutant strains and to select double mutants en masse. Strain fitness, which is used as the eSGA readout, is quantified by the digital imaging of the plates and subsequent measuring and comparing single and double mutant colony sizes. While eSGA can be used to screen select mutants to probe the functions of individual genes, using eSGA more broadly to collect genetic interaction data for many combinations of genes can help reconstruct a functional interaction network to reveal novel links and components of biological pathways as well as unexpected connections between pathways. A variety of bacterial systems can be investigated, wherein the genes impinge on a essential biological process (e.g., cell wall assembly, ribosome biogenesis, chromosome replication) that are of interest from the perspective of drug development (Babu et al., Mol Biosyst 12:1439-1455, 2009). We also show how genetic interactions generated by high-throughput eSGA screens can be validated by manual small-scale genetic crosses and by genetic complementation and gene rescue experiments.

Collaboration


Dive into the Alla Gagarinova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aiming Wang

Agriculture and Agri-Food Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge