Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Vlasblom is active.

Publication


Featured researches published by James Vlasblom.


Nature | 2006

Global landscape of protein complexes in the yeast Saccharomyces cerevisiae

Nevan J. Krogan; Gerard Cagney; Haiyuan Yu; Gouqing Zhong; Xinghua Guo; Alexandr Ignatchenko; Joyce Li; Shuye Pu; Nira Datta; Aaron Tikuisis; Thanuja Punna; José M. Peregrín-Alvarez; Michael Shales; Xin Zhang; Michael Davey; Mark D. Robinson; Alberto Paccanaro; James E. Bray; Anthony Sheung; Bryan Beattie; Dawn Richards; Veronica Canadien; Atanas Lalev; Frank Mena; Peter Y. Wong; Andrei Starostine; Myra M. Canete; James Vlasblom; Samuel Wu; Chris Orsi

Identification of protein–protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption/ionization–time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage and accuracy. Machine learning was used to integrate the mass spectrometry scores and assign probabilities to the protein–protein interactions. Among 4,087 different proteins identified with high confidence by mass spectrometry from 2,357 successful purifications, our core data set (median precision of 0.69) comprises 7,123 protein–protein interactions involving 2,708 proteins. A Markov clustering algorithm organized these interactions into 547 protein complexes averaging 4.9 subunits per complex, about half of them absent from the MIPS database, as well as 429 additional interactions between pairs of complexes. The data (all of which are available online) will help future studies on individual proteins as well as functional genomics and systems biology.


BMC Bioinformatics | 2009

Markov clustering versus affinity propagation for the partitioning of protein interaction graphs

James Vlasblom

BackgroundGenome scale data on protein interactions are generally represented as large networks, or graphs, where hundreds or thousands of proteins are linked to one another. Since proteins tend to function in groups, or complexes, an important goal has been to reliably identify protein complexes from these graphs. This task is commonly executed using clustering procedures, which aim at detecting densely connected regions within the interaction graphs. There exists a wealth of clustering algorithms, some of which have been applied to this problem. One of the most successful clustering procedures in this context has been the Markov Cluster algorithm (MCL), which was recently shown to outperform a number of other procedures, some of which were specifically designed for partitioning protein interactions graphs. A novel promising clustering procedure termed Affinity Propagation (AP) was recently shown to be particularly effective, and much faster than other methods for a variety of problems, but has not yet been applied to partition protein interaction graphs.ResultsIn this work we compare the performance of the Affinity Propagation (AP) and Markov Clustering (MCL) procedures. To this end we derive an unweighted network of protein-protein interactions from a set of 408 protein complexes from S. cervisiae hand curated in-house, and evaluate the performance of the two clustering algorithms in recalling the annotated complexes. In doing so the parameter space of each algorithm is sampled in order to select optimal values for these parameters, and the robustness of the algorithms is assessed by quantifying the level of complex recall as interactions are randomly added or removed to the network to simulate noise. To evaluate the performance on a weighted protein interaction graph, we also apply the two algorithms to the consolidated protein interaction network of S. cerevisiae, derived from genome scale purification experiments and to versions of this network in which varying proportions of the links have been randomly shuffled.ConclusionOur analysis shows that the MCL procedure is significantly more tolerant to noise and behaves more robustly than the AP algorithm. The advantage of MCL over AP is dramatic for unweighted protein interaction graphs, as AP displays severe convergence problems on the majority of the unweighted graph versions that we tested, whereas MCL continues to identify meaningful clusters, albeit fewer of them, as the level of noise in the graph increases. MCL thus remains the method of choice for identifying protein complexes from binary interaction networks.


Nature | 2012

Interaction landscape of membrane - protein complexes in Saccharomyces cerevisiae

Mohan Babu; James Vlasblom; Shuye Pu; Xinghua Guo; Chris Graham; Björn D. M. Bean; Helen E. Burston; Franco J. Vizeacoumar; Jamie Snider; Sadhna Phanse; Vincent Fong; Yuen Yi C. Tam; Michael Davey; Olha Hnatshak; Navgeet Bajaj; Shamanta Chandran; Thanuja Punna; Constantine Christopolous; Victoria Wong; Analyn Yu; Gouqing Zhong; Joyce Li; Igor Stagljar; Elizabeth Conibear; Andrew Emili; Jack Greenblatt

Macromolecular assemblies involving membrane proteins (MPs) serve vital biological roles and are prime drug targets in a variety of diseases. Large-scale affinity purification studies of soluble-protein complexes have been accomplished for diverse model organisms, but no global characterization of MP-complex membership has been described so far. Here we report a complete survey of 1,590 putative integral, peripheral and lipid-anchored MPs from Saccharomyces cerevisiae, which were affinity purified in the presence of non-denaturing detergents. The identities of the co-purifying proteins were determined by tandem mass spectrometry and subsequently used to derive a high-confidence physical interaction map encompassing 1,726 membrane protein–protein interactions and 501 putative heteromeric complexes associated with the various cellular membrane systems. Our analysis reveals unexpected physical associations underlying the membrane biology of eukaryotes and delineates the global topological landscape of the membrane interactome.


Database | 2010

iRefWeb: interactive analysis of consolidated protein interaction data and their supporting evidence

Brian Turner; Sabry Razick; Andrei L. Turinsky; James Vlasblom; Edgard K. Crowdy; Emerson Cho; Kyle Morrison; Ian M. Donaldson

We present iRefWeb, a web interface to protein interaction data consolidated from 10 public databases: BIND, BioGRID, CORUM, DIP, IntAct, HPRD, MINT, MPact, MPPI and OPHID. iRefWeb enables users to examine aggregated interactions for a protein of interest, and presents various statistical summaries of the data across databases, such as the number of organism-specific interactions, proteins and cited publications. Through links to source databases and supporting evidence, researchers may gauge the reliability of an interaction using simple criteria, such as the detection methods, the scale of the study (high- or low-throughput) or the number of cited publications. Furthermore, iRefWeb compares the information extracted from the same publication by different databases, and offers means to follow-up possible inconsistencies. We provide an overview of the consolidated protein–protein interaction landscape and show how it can be automatically cropped to aid the generation of meaningful organism-specific interactomes. iRefWeb can be accessed at: http://wodaklab.org/iRefWeb. Database URL: http://wodaklab.org/iRefWeb/


Nature Biotechnology | 2014

The binary protein-protein interaction landscape of Escherichia coli

Seesandra V. Rajagopala; Patricia Sikorski; Ashwani Kumar; Roberto Mosca; James Vlasblom; Roland Arnold; Jonathan Franca-Koh; Suman B. Pakala; Sadhna Phanse; Arnaud Ceol; Roman Häuser; Gabriella Siszler; Stefan Wuchty; Andrew Emili; Mohan Babu; Patrick Aloy; Rembert Pieper; Peter Uetz

Efforts to map the Escherichia coli interactome have identified several hundred macromolecular complexes, but direct binary protein-protein interactions (PPIs) have not been surveyed on a large scale. Here we performed yeast two-hybrid screens of 3,305 baits against 3,606 preys (∼70% of the E. coli proteome) in duplicate to generate a map of 2,234 interactions, which approximately doubles the number of known binary PPIs in E. coli. Integration of binary PPI and genetic-interaction data revealed functional dependencies among components involved in cellular processes, including envelope integrity, flagellum assembly and protein quality control. Many of the binary interactions that we could map in multiprotein complexes were informative regarding internal topology of complexes and indicated that interactions in complexes are substantially more conserved than those interactions connecting different complexes. This resource will be useful for inferring bacterial gene function and provides a draft reference of the basic physical wiring network of this evolutionarily important model microbe.


Molecular & Cellular Proteomics | 2009

Challenges and Rewards of Interaction Proteomics

Shuye Pu; James Vlasblom; Bertrand Séraphin

The recent explosion of high throughput experimental technologies for characterizing protein interactions has generated large amounts of data describing interactions between thousands of proteins and producing genome scale views of protein assemblies. The systems level views afforded by these data hold great promise of leading to new knowledge but also involve many challenges. Deriving meaningful biological conclusions from these views crucially depends on our understanding of the approximation and biases that enter into deriving and interpreting the data. The challenges and rewards of interaction proteomics are reviewed here using as an example the latest comprehensive high throughput analyses of protein interactions in yeast.


PLOS Genetics | 2011

Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

Mohan Babu; J. Javier Díaz-Mejía; James Vlasblom; Alla Gagarinova; Sadhna Phanse; Chris Graham; Fouad Yousif; Huiming Ding; Xuejian Xiong; Anaies Nazarians-Armavil; Alamgir; Mehrab Ali; Oxana Pogoutse; Asaf Peer; Roland Arnold; Magali Michaut; John Parkinson; Ashkan Golshani; Chris Whitfield; Gabriel Moreno-Hagelsieb; Jack Greenblatt; Andrew Emili

As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target.


Bioinformatics | 2006

GenePro: a cytoscape plug-in for advanced visualization and analysis of interaction networks

James Vlasblom; Samuel Wu; Shuye Pu; Mark Superina; Gina Liu; Chris Orsi

MOTIVATION Analyzing the networks of interactions between genes and proteins has become a central theme in systems biology. Versatile software tools for interactively displaying and analyzing these networks are therefore very much in demand. The public-domain open software environment Cytoscape has been developed with the goal of facilitating the design and development of such software tools by the scientific community. RESULTS We present GenePro, a plugin to Cytoscape featuring a set of versatile tools that greatly facilitates the visualization and analysis of protein networks derived from high-throughput interactions data and the validation of various methods for parsing these networks into meaningful functional modules. AVAILABILITY The GenePro plugin is available at the website http://genepro.ccb.sickkids.ca.


Current Opinion in Structural Biology | 2013

Protein–protein interaction networks: the puzzling riches

James Vlasblom; Andrei L. Turinsky; Shuye Pu

While major progress has been achieved in the experimental techniques used for the detection of protein interactions and in the processing and analysis of the vast amount of data that they generate, we still do not understand why the set of identified interactions remains so highly dependent on the particular detection method. Here we present an overview of the major high-throughput experimental methods used to detect interactions and the datasets produced using these methods over the last 10 years. We discuss the challenges of assessing the quality of these datasets, and examine key factors that likely underlie the persistent poor overlap between the interactions detected by different methods. Lastly, we present a brief overview of the literature-curated protein interaction data stored in public databases, which are often relied upon for independent validation of newly derived interaction networks.


Bioinformatics | 2008

Local coherence in genetic interaction patterns reveals prevalent functional versatility

Shuye Pu; Karen Ronen; James Vlasblom; Jack Greenblatt

MOTIVATION Epistatic or genetic interactions, representing the effects of mutating one gene on the phenotypes caused by mutations in one or more distinct genes, can be very helpful for uncovering functional relationships between genes. Recently, the epistatic miniarray profiles (E-MAP) method has emerged as a powerful approach for identifying such interactions systematically. For E-MAP data analysis, hierarchical clustering is used to partition genes into groups on the basis of the similarity between their global interaction profiles, and the resulting descriptions assign each gene to only one group, thereby ignoring the multifunctional roles played by most genes. RESULTS Here, we present the original local coherence detection (LCD) algorithm for identifying groups of functionally related genes from E-MAP data in a manner that allows individual genes to be assigned to more than one functional group. This enables investigation of the pleiotropic nature of gene function. The performance of our algorithm is illustrated by applying it to two E-MAP datasets and an E-MAP-like in silico dataset for the yeast Saccharomyces cerevisiae. In addition to recapitulating the majority of the functional modules and many protein complexes reported previously, our algorithm uncovers many recently documented and novel multifunctional relationships between genes and gene groups. Our algorithm hence represents a valuable tool for uncovering new roles for genes with annotated functions and for mapping groups of genes and proteins into pathways.

Collaboration


Dive into the James Vlasblom's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuye Pu

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge