Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allan I. Basbaum is active.

Publication


Featured researches published by Allan I. Basbaum.


Nature | 2001

Molecular mechanisms of nociception

David Julius; Allan I. Basbaum

The sensation of pain alerts us to real or impending injury and triggers appropriate protective responses. Unfortunately, pain often outlives its usefulness as a warning system and instead becomes chronic and debilitating. This transition to a chronic phase involves changes within the spinal cord and brain, but there is also remarkable modulation where pain messages are initiated — at the level of the primary sensory neuron. Efforts to determine how these neurons detect pain-producing stimuli of a thermal, mechanical or chemical nature have revealed new signalling mechanisms and brought us closer to understanding the molecular events that facilitate transitions from acute to persistent pain.


Cell | 2009

Cellular and Molecular Mechanisms of Pain

Allan I. Basbaum; Diana M. Bautista; Grégory Scherrer; David Julius

The nervous system detects and interprets a wide range of thermal and mechanical stimuli, as well as environmental and endogenous chemical irritants. When intense, these stimuli generate acute pain, and in the setting of persistent injury, both peripheral and central nervous system components of the pain transmission pathway exhibit tremendous plasticity, enhancing pain signals and producing hypersensitivity. When plasticity facilitates protective reflexes, it can be beneficial, but when the changes persist, a chronic pain condition may result. Genetic, electrophysiological, and pharmacological studies are elucidating the molecular mechanisms that underlie detection, coding, and modulation of noxious stimuli that generate pain.


Cell | 2006

TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents

Diana M. Bautista; Sven-Eric Jordt; Tetsuro Nikai; Pamela R. Tsuruda; Andrew J. Read; Jeannie Poblete; Ebenezer N. Yamoah; Allan I. Basbaum; David Julius

TRPA1 is an excitatory ion channel targeted by pungent irritants from mustard and garlic. TRPA1 has been proposed to function in diverse sensory processes, including thermal (cold) nociception, hearing, and inflammatory pain. Using TRPA1-deficient mice, we now show that this channel is the sole target through which mustard oil and garlic activate primary afferent nociceptors to produce inflammatory pain. TRPA1 is also targeted by environmental irritants, such as acrolein, that account for toxic and inflammatory actions of tear gas, vehicle exhaust, and metabolic byproducts of chemotherapeutic agents. TRPA1-deficient mice display normal cold sensitivity and unimpaired auditory function, suggesting that this channel is not required for the initial detection of noxious cold or sound. However, TRPA1-deficient mice exhibit pronounced deficits in bradykinin-evoked nociceptor excitation and pain hypersensitivity. Thus, TRPA1 is an important component of the transduction machinery through which environmental irritants and endogenous proalgesic agents depolarize nociceptors to elicit inflammatory pain.


Nature | 2001

Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition.

Huai-hu Chuang; Elizabeth D. Prescott; Haeyoung Kong; Shannon Shields; Sven-Eric Jordt; Allan I. Basbaum; Moses V. Chao; David Julius

Tissue injury generates endogenous factors that heighten our sense of pain by increasing the response of sensory nerve endings to noxious stimuli. Bradykinin and nerve growth factor (NGF) are two such pro-algesic agents that activate G-protein-coupled (BK2) and tyrosine kinase (TrkA) receptors, respectively, to stimulate phospholipase C (PLC) signalling pathways in primary afferent neurons. How these actions produce sensitization to physical or chemical stimuli has not been elucidated at the molecular level. Here, we show that bradykinin- or NGF-mediated potentiation of thermal sensitivity in vivo requires expression of VR1, a heat-activated ion channel on sensory neurons. Diminution of plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) levels through antibody sequestration or PLC-mediated hydrolysis mimics the potentiating effects of bradykinin or NGF at the cellular level. Moreover, recruitment of PLC-γ to TrkA is essential for NGF-mediated potentiation of channel activity, and biochemical studies suggest that VR1 associates with this complex. These studies delineate a biochemical mechanism through which bradykinin and NGF produce hypersensitivity and might explain how the activation of PLC signalling systems regulates other members of the TRP channel family.


Nature | 2007

The menthol receptor TRPM8 is the principal detector of environmental cold

Diana M. Bautista; Jan Siemens; Joshua M. Glazer; Pamela R. Tsuruda; Allan I. Basbaum; Cheryl L. Stucky; Sven-Eric Jordt; David Julius

Sensory nerve fibres can detect changes in temperature over a remarkably wide range, a process that has been proposed to involve direct activation of thermosensitive excitatory transient receptor potential (TRP) ion channels. One such channel—TRP melastatin 8 (TRPM8) or cold and menthol receptor 1 (CMR1)—is activated by chemical cooling agents (such as menthol) or when ambient temperatures drop below ∼26 °C, suggesting that it mediates the detection of cold thermal stimuli by primary afferent sensory neurons. However, some studies have questioned the contribution of TRPM8 to cold detection or proposed that other excitatory or inhibitory channels are more critical to this sensory modality in vivo. Here we show that cultured sensory neurons and intact sensory nerve fibres from TRPM8-deficient mice exhibit profoundly diminished responses to cold. These animals also show clear behavioural deficits in their ability to discriminate between cold and warm surfaces, or to respond to evaporative cooling. At the same time, TRPM8 mutant mice are not completely insensitive to cold as they avoid contact with surfaces below 10 °C, albeit with reduced efficiency. Thus, our findings demonstrate an essential and predominant role for TRPM8 in thermosensation over a wide range of cold temperatures, validating the hypothesis that TRP channels are the principal sensors of thermal stimuli in the peripheral nervous system.


Proceedings of the National Academy of Sciences of the United States of America | 2007

4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1

Marcello Trevisani; Jan Siemens; Serena Materazzi; Diana M. Bautista; Romina Nassini; Barbara Campi; Noritaka Imamachi; Eunice André; Riccardo Patacchini; Graeme S. Cottrell; Raffaele Gatti; Allan I. Basbaum; Nigel W. Bunnett; David Julius; Pierangelo Geppetti

TRPA1 is an excitatory ion channel expressed by a subpopulation of primary afferent somatosensory neurons that contain substance P and calcitonin gene-related peptide. Environmental irritants such as mustard oil, allicin, and acrolein activate TRPA1, causing acute pain, neuropeptide release, and neurogenic inflammation. Genetic studies indicate that TRPA1 is also activated downstream of one or more proalgesic agents that stimulate phospholipase C signaling pathways, thereby implicating this channel in peripheral mechanisms controlling pain hypersensitivity. However, it is not known whether tissue injury also produces endogenous proalgesic factors that activate TRPA1 directly to augment inflammatory pain. Here, we report that recombinant or native TRPA1 channels are activated by 4-hydroxy-2-nonenal (HNE), an endogenous α,β-unsaturated aldehyde that is produced when reactive oxygen species peroxidate membrane phospholipids in response to tissue injury, inflammation, and oxidative stress. HNE provokes release of substance P and calcitonin gene-related peptide from central (spinal cord) and peripheral (esophagus) nerve endings, resulting in neurogenic plasma protein extravasation in peripheral tissues. Moreover, injection of HNE into the rodent hind paw elicits pain-related behaviors that are inhibited by TRPA1 antagonists and absent in animals lacking functional TRPA1 channels. These findings demonstrate that HNE activates TRPA1 on nociceptive neurons to promote acute pain, neuropeptide release, and neurogenic inflammation. Our results also provide a mechanism-based rationale for developing novel analgesic or anti-inflammatory agents that target HNE production or TRPA1 activation.


Neuron | 2002

Regeneration of Sensory Axons within the Injured Spinal Cord Induced by Intraganglionic cAMP Elevation

Simona Neumann; Frank Bradke; Marc Tessier-Lavigne; Allan I. Basbaum

The peripheral branch of primary sensory neurons regenerates after injury, but there is no regeneration when their central branch is severed by spinal cord injury. Here we show that microinjection of a membrane-permeable analog of cAMP in lumbar dorsal root ganglia markedly increases the regeneration of injured central sensory branches. The injured axons regrow into the spinal cord lesion, often traversing the injury site. This result mimics the effect of a conditioning peripheral nerve lesion. We also demonstrate that sensory neurons exposed to cAMP in vivo, when subsequently cultured in vitro, show enhanced growth of neurites and an ability to overcome inhibition by CNS myelin. Thus, stimulating cAMP signaling increases the intrinsic growth capacity of injured sensory axons. This approach may be useful in promoting regeneration after spinal cord injury.


Nature | 1998

Primary afferent tachykinins are required to experience moderate to intense pain

Yu-Qing Cao; Patrick W. Mantyh; Elaine J. Carlson; Anne Marie Gillespie; Charles J. Epstein; Allan I. Basbaum

The excitatory neurotransmitter glutamate coexists with the peptide known as substance P in primary afferents that respond to painful stimulation. Because blockers of glutamate receptors reliably reduce pain behaviour, it is assumed that ‘pain’ messages are mediated by glutamate action on dorsal horn neurons. The contribution of substance P, however, is still unclear. We have now disrupted the mouse preprotachykinin A gene (PPT-A), which encodes substance P and a related tachykinin, neurokinin A (ref. 5). We find that although the behavioural response to mildly painful stimuli is intact in these mice, the response to moderate to intense pain is significantly reduced. Neurogenic inflammation, which results from peripheral release of substance P and neurokinin A (ref. 6), is almost absent in the mutant mice. We conclude that the release of tachykinins from primary afferent pain-sensing receptors (nociceptors) is required to produce moderate to intense pain.


Brain Research | 1977

Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons

Howard L. Fields; Allan I. Basbaum; Charles H. Clanton; Stuart D. Anderson

In decerebrate cats, electrical stimulation of nucleus raphe magnus (NRM) of the medulla produced marked inhibition of spinal neurons in lumbosacral dorsal horn. Only neurons with high threshold inputs were inhibited. These cells were located in lamina I and in or near laminae V and VI. The duration of inhibition produced was related to the stimulus train length. An ipsilateral lesion of the dorsolateral funiculus at L1 markedly reduced the inhibition of neurons caudal to the lesion. Although NRM stimulation was the most effective, inhibition from more lateral sites could be obtained at higher stimulus intensities. NRM induced inhibition is probably mediated by a direct projection via the dorsolateral funiculus to spinal dorsal horn laminae I, II, V and VI. The results are discussed in relation to proposed mechanisms underlying the analgesia produced by NRM stimulation.


Nature Medicine | 2001

Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway.

Nathalie Vergnolle; N.W. Bunnett; Keith A. Sharkey; V. Brussee; S.J. Compton; E.F. Grady; Giuseppe Cirino; Norma P. Gerard; Allan I. Basbaum; P. Andrade-Gordon; Morley D. Hollenberg; John L. Wallace

Using a combined pharmacological and gene-deletion approach, we have delineated a novel mechanism of neurokinin-1 (NK-1) receptor-dependent hyperalgesia induced by proteinase-activated receptor-2 (PAR2), a G-protein–coupled receptor expressed on nociceptive primary afferent neurons. Injections into the paw of sub-inflammatory doses of PAR2 agonists in rats and mice induced a prolonged thermal and mechanical hyperalgesia and elevated spinal Fos protein expression. This hyperalgesia was markedly diminished or absent in mice lacking the NK-1 receptor, preprotachykinin-A or PAR2 genes, or in rats treated with a centrally acting cyclooxygenase inhibitor or treated by spinal cord injection of NK-1 antagonists. Here we identify a previously unrecognized nociceptive pathway with important therapeutic implications, and our results point to a direct role for proteinases and their receptors in pain transmission.

Collaboration


Dive into the Allan I. Basbaum's collaboration.

Top Co-Authors

Avatar

Jon D. Levine

University of California

View shared research outputs
Top Co-Authors

Avatar

João M. Bráz

University of California

View shared research outputs
Top Co-Authors

Avatar

David Julius

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xidao Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate Skinner

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge