Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allan V. Espinosa is active.

Publication


Featured researches published by Allan V. Espinosa.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion

Vasily Vasko; Allan V. Espinosa; William T. Scouten; Huiling He; Herbert Auer; Sandya Liyanarachchi; Alexander Larin; V Savchenko; Gary L. Francis; Albert de la Chapelle; Motoyasu Saji; Matthew D. Ringel

Papillary thyroid carcinomas (PTCs) that invade into local structures are associated with a poor prognosis, but the mechanisms for PTC invasion are incompletely defined, limiting the development of new therapies. To characterize biological processes involved in PTC invasion, we analyzed the gene expression profiles of microscopically dissected intratumoral samples from central and invasive regions of seven widely invasive PTCs and normal thyroid tissue by oligonucleotide microarray and performed confirmatory expression and functional studies. In comparison with the central regions of primary PTCs, the invasive fronts overexpressed TGF β, NFκB and integrin pathway members, and regulators of small G proteins and CDC42. Moreover, reduced levels of mRNAs encoding proteins involved in cell–cell adhesion and communication were identified, consistent with epithelial-to-mesenchymal transition (EMT). To confirm that aggressive PTCs were characterized by EMT, 34 additional PTCs were examined for expression of vimentin, a hallmark of EMT. Overexpression of vimentin was associated with PTC invasion and nodal metastasis. Functional, in vitro studies demonstrated that vimentin was required both for the development and maintenance of a mesenchymal morphology and invasiveness in thyroid cancer cells. We conclude that EMT is common in PTC invasion and that vimentin regulates thyroid cancer EMT in vitro.


Molecular Pharmacology | 2007

2-Amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl} Acetamide (OSU-03012), a Celecoxib Derivative, Directly Targets p21-Activated Kinase

Leonardo M. Porchia; Marcy Guerra; Yu-Chieh Wang; Yunlong Zhang; Allan V. Espinosa; Motoo Shinohara; Samuel K. Kulp; Lawrence S. Kirschner; Motoyasu Saji; Ching-Shih Chen; Matthew D. Ringel

p21-Activated kinases (PAKs) are regulators of cell motility and proliferation. PAK activity is regulated in part by phosphoinositide-dependent kinase 1 (PDK1). We hypothesized that reduced PAK activity was involved in the effects of 2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl} acetamide (OSU-03012), a previously characterized PDK1 inhibitor derived from celecoxib. In three human thyroid cancer cell lines, OSU-03012 inhibited cell proliferation with reduced AKT phosphorylation by PDK1. OSU-03012 unexpectedly inhibited PAK phosphorylation at lower concentrations than PDK1-dependent AKT phosphorylation in two of the three lines. In cell-free kinase assays, OSU-03012 was shown to inhibit PAK activity and compete with ATP binding. In addition, computer modeling predicted a docking site for OSU-03012 in the ATP binding motif of PAK1. Finally, overexpression of constitutively activated PAK1 partially rescued the ability of motile NPA thyroid cancer cells to migrate during OSU-03012 treatment, suggesting that inhibition of PAK may be involved in the cellular effects of OSU-03012 in these cells. In summary, OSU-03012 is a direct inhibitor of PAK, and inhibition of PAK, either directly or indirectly, may be involved in its biological effects in vitro.


Molecular Pharmacology | 2007

OSU03012, A Celecoxib Derivative, Directly Targets p21 Activated Kinase

Leonardo M. Porchia; Marcy Guerra; Yu-Chieh Wang; Yunlong Zhang; Allan V. Espinosa; Motoo Shinohara; Samuel K. Kulp; Lawrence S. Kirschner; Motoyasu Saji; Ching-Shih Chen; Matthew D. Ringel

p21-Activated kinases (PAKs) are regulators of cell motility and proliferation. PAK activity is regulated in part by phosphoinositide-dependent kinase 1 (PDK1). We hypothesized that reduced PAK activity was involved in the effects of 2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl} acetamide (OSU-03012), a previously characterized PDK1 inhibitor derived from celecoxib. In three human thyroid cancer cell lines, OSU-03012 inhibited cell proliferation with reduced AKT phosphorylation by PDK1. OSU-03012 unexpectedly inhibited PAK phosphorylation at lower concentrations than PDK1-dependent AKT phosphorylation in two of the three lines. In cell-free kinase assays, OSU-03012 was shown to inhibit PAK activity and compete with ATP binding. In addition, computer modeling predicted a docking site for OSU-03012 in the ATP binding motif of PAK1. Finally, overexpression of constitutively activated PAK1 partially rescued the ability of motile NPA thyroid cancer cells to migrate during OSU-03012 treatment, suggesting that inhibition of PAK may be involved in the cellular effects of OSU-03012 in these cells. In summary, OSU-03012 is a direct inhibitor of PAK, and inhibition of PAK, either directly or indirectly, may be involved in its biological effects in vitro.


Carcinogenesis | 2011

Epigenetic deregulation of TCF21 inhibits metastasis suppressor KISS1 in metastatic melanoma

Khelifa Arab; Laura T. Smith; Andreas Gast; Dieter Weichenhan; Joseph Huang; Rainer Claus; Thomas Hielscher; Allan V. Espinosa; Matthew D. Ringel; Carl Morrison; Dirk Schadendorf; Rajiv Kumar; Christoph Plass

Metastatic melanoma is a fatal disease due to the lack of successful therapies and biomarkers for early detection and its incidence has been increasing. Genetic studies have defined recurrent chromosomal aberrations, suggesting the location of either tumor suppressor genes or oncogenes. Transcription factor 21 (TCF21) belongs to the class A of the basic helix-loop-helix family with reported functions in early lung and kidney development as well as tumor suppressor function in the malignancies of the lung and head and neck. In this study, we combined quantitative DNA methylation analysis in patient biopsies and in their derived cell lines to demonstrate that TCF21 expression is downregulated in metastatic melanoma by promoter hypermethylation and TCF21 promoter DNA methylation is correlated with decreased survival in metastatic skin melanoma patients. In addition, the chromosomal location of TCF21 on 6q23-q24 coincides with the location of a postulated metastasis suppressor in melanoma. Functionally, TCF21 binds the promoter of the melanoma metastasis-suppressing gene, KiSS1, and enhances its gene expression through interaction with E12, a TCF3 isoform and with TCF12. Loss of TCF21 expression results in loss of KISS1 expression through loss of direct interaction of TCF21 at the KISS1 promoter. Finally, overexpression of TCF21 inhibits motility of C8161 melanoma cells. These data suggest that epigenetic downregulation of TCF21 is functionally involved in melanoma progression and that it may serve as a biomarker for aggressive tumor behavior.


Clinical Cancer Research | 2013

Integrative genomics analysis identifies candidate drivers at 3q26-29 amplicon in squamous cell carcinoma of the lung

Jing Wang; Megan D. Hoeksema; Yong Zou; Allan V. Espinosa; Jamshedur Rahman; Bing Zhang; Pierre P. Massion

Purpose: Chromosome 3q26-29 is a critical region of genomic amplification in lung squamous cell carcinomas (SCC). Identification of candidate drivers in this region could help uncover new mechanisms in the pathogenesis and potentially new targets in SCC of the lung. Experimental Design: We conducted a meta-analysis of seven independent datasets containing a total of 593 human primary SCC samples to identify consensus candidate drivers in 3q26-29 amplicon. Through integrating protein–protein interaction network information, we further filtered for candidates that may function together in a network. Computationally predicted candidates were validated using RNA interference (RNAi) knockdown and cell viability assays. Clinical relevance of the experimentally supported drivers was evaluated in an independent cohort of 52 lung SCC patients using survival analysis. Results: The meta-analysis identified 20 consensus candidates, among which four (SENP2, DCUN1D1, DVL3, and UBXN7) are involved in a small protein–protein interaction network. Knocking down any of the four proteins led to cell growth inhibition of the 3q26-29–amplified SCC. Moreover, knocking down of SENP2 resulted in the most significant cell growth inhibition and downregulation of DCUN1D1 and DVL3. Importantly, a gene expression signature composed of SENP2, DCUN1D1, and DVL3 stratified patients into subgroups with different response to adjuvant chemotherapy. Conclusion: Together, our findings show that SENP2, DCUN1D1, and DVL3 are candidate driver genes in the 3q26-29 amplicon of SCC, providing novel insights into the molecular mechanisms of disease progression and may have significant implication in the management of SCC of the lung. Clin Cancer Res; 19(20); 5580–90. ©2013 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The RNA binding protein FXR1 is a new driver in the 3q26-29 amplicon and predicts poor prognosis in human cancers

Mohamed Hassanein; Megan D. Hoeksema; Bradford K. Harris; Yong Zou; Heidi Chen; Pengcheng Lu; Rosana Eisenberg; Jing Wang; Allan V. Espinosa; Xiangming Ji; Fredrick T. Harris; S. M. Jamshedur Rahman; Pierre P. Massion

Significance Altered expression of RNA binding proteins might contribute to cancer development. This study reveals the functional implications and clinical relevance of FXR1, an RNA binding protein, in non-small cell lung cancer (NSCLC). Our results demonstrate that FXR1 promotes tumor progression by regulating two other oncogenes within the same chromosome 3q amplicon. To drive tumor progression, FXR1 forms a new complex with protein kinase C, iota, and posttranscriptionally stabilizes the expression of epithelial cell transforming 2. We show that increased FXR1 expression in NSCLC is a candidate biomarker predictive of poor survival and might represent a novel therapeutic target. In addition, FXR1 expression correlates with poor clinical outcome in multiple human cancers, suggesting broader implications of this RNA binding protein in cancer progression. Aberrant expression of RNA-binding proteins has profound implications for cellular physiology and the pathogenesis of human diseases such as cancer. We previously identified the Fragile X-Related 1 gene (FXR1) as one amplified candidate driver gene at 3q26-29 in lung squamous cell carcinoma (SCC). FXR1 is an autosomal paralog of Fragile X mental retardation 1 and has not been directly linked to human cancers. Here we demonstrate that FXR1 is a key regulator of tumor progression and its overexpression is critical for nonsmall cell lung cancer (NSCLC) cell growth in vitro and in vivo. We identified the mechanisms by which FXR1 executes its regulatory function by forming a novel complex with two other oncogenes, protein kinase C, iota and epithelial cell transforming 2, located in the same amplicon via distinct binding mechanisms. FXR1 expression is a candidate biomarker predictive of poor survival in multiple solid tumors including NSCLCs. Because FXR1 is overexpressed and associated with poor clinical outcomes in multiple cancers, these results have implications for other solid malignancies.


Clinical & Experimental Metastasis | 2009

Regulator of calcineurin 1 modulates cancer cell migration in vitro

Allan V. Espinosa; Motoo Shinohara; Leonardo M. Porchia; Yun Jae Chung; Samantha K McCarty; Motoyasu Saji; Matthew D. Ringel

Metastasis suppressors and other regulators of cell motility play an important role in tumor invasion and metastases. We previously identified that activation of the G protein coupled receptor 54 (GPR54) by the metastasis suppressor metastin inhibits cell migration in association with overexpression of Regulator of calcineurin 1 (RCAN1), an endogenous regulator of calcineurin. Calcineurin inhibitors also blocked cell migration in vitro and RCAN1 protein levels were reduced in nodal metastases in thyroid cancer. The purpose of the current study was to determine directly if RCAN1 functions as a motility suppressor in vitro. Several cancer cell lines derived from different cancer types with different motility rates were evaluated for RCAN1 expression levels. Using these systems we determined that reduction of endogenous RCAN1 using siRNA resulted in an increase in cancer cell motility while expression of exogenous RCAN1 reduced cell motility. In one cell line with a high migratory rate, the stability of exogenously expressed RCAN1 protein was reduced and was rescued by treatment with a proteasome inhibitor. Finally, overexpression of RCAN1 was associated with an increase in cell adhesion to collagen IV and reduced calcineurin activity. In summary, we have demonstrated that the expression of exogenous RCAN1 reduces migration and alters adhesion; and that the loss of endogenous RCAN1 leads to an increase in migration in the examined cancer cell lines. These results are consistent with a regulatory role for RCAN1 in cancer cell motility in vitro.


The Journal of Clinical Endocrinology and Metabolism | 2005

KiSS-1/G Protein-Coupled Receptor 54 Metastasis Suppressor Pathway Increases Myocyte-Enriched Calcineurin Interacting Protein 1 Expression and Chronically Inhibits Calcineurin Activity

Nikolaos Stathatos; Isabelle Bourdeau; Allan V. Espinosa; Motoyasu Saji; Vasily Vasko; Kenneth D. Burman; Constantine A. Stratakis; Matthew D. Ringel


Journal of Surgical Research | 2009

Thiazolidinediones Downregulate Wnt/β-Catenin Signaling Via Multiple Mechanisms in Breast Cancer Cells

Pei-Shan Wang; Fu-Sheng Chou; Mark Bloomston; Martin Vonau; Motoyasu Saji; Allan V. Espinosa; Joseph J. Pinzone


Cancer Research | 2006

OSU03012, a novel PDK1 inhibitor, decreases thyroid cancer proliferation and migration via multiple downstream pathways.

Leonardo M. Porchia; Marcy Guerra; Allan V. Espinosa; Motoyasu Saji; Samuel K. Kulp; Matthew D. Ringel; Ching-Shih Chen

Collaboration


Dive into the Allan V. Espinosa's collaboration.

Top Co-Authors

Avatar

Matthew D. Ringel

MedStar Washington Hospital Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge