Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allyson Sholl is active.

Publication


Featured researches published by Allyson Sholl.


Journal of Immunology | 2010

STAT5 is critical to maintain effector CD8+ T cell responses.

Pulak Tripathi; Sema Kurtulus; Sara Wojciechowski; Allyson Sholl; Kasper Hoebe; Suzanne C. Morris; Fred D. Finkelman; H. Leighton Grimes; David A. Hildeman

During an immune response, most effector T cells die, whereas some are maintained and become memory T cells. Factors controlling the survival of effector CD4+ and CD8+ T cells remain unclear. In this study, we assessed the role of IL-7, IL-15, and their common signal transducer, STAT5, in maintaining effector CD4+ and CD8+ T cell responses. Following viral infection, IL-15 was required to maintain a subpopulation of effector CD8+ T cells expressing high levels of killer cell lectin-like receptor subfamily G, member 1 (KLRG1), and lower levels of CD127, whereas IL-7 and IL-15 acted together to maintain KLRG1lowCD127high CD8+ effector T cells. In contrast, effector CD4+ T cell numbers were not affected by the individual or combined loss of IL-15 and IL-7. Both IL-7 and IL-15 drove phosphorylation of STAT5 within effector CD4+ and CD8+ T cells. When STAT5 was deleted during the course of infection, both KLRG1highCD127low and KLRG1lowCD127high CD8+ T cells were lost, although effector CD4+ T cell populations were maintained. Furthermore, STAT5 was required to maintain expression of Bcl-2 in effector CD8+, but not CD4+, T cells. Finally, IL-7 and IL-15 required STAT5 to induce Bcl-2 expression and to maintain effector CD8+ T cells. Together, these data demonstrate that IL-7 and IL-15 signaling converge on STAT5 to maintain effector CD8+ T cell responses.


Journal of Immunology | 2011

A Major Role for Bim in Regulatory T Cell Homeostasis

Claire A. Chougnet; Pulak Tripathi; Celine S. Lages; Jana Raynor; Allyson Sholl; Pamela J. Fink; David R. Plas; David A. Hildeman

We have previously shown that regulatory T cells (Treg) accumulate dramatically in aged animals and negatively impact the ability to control persistent infection. However, the mechanisms underlying the age-dependent accrual of Treg remain unclear. In this study, we show that Treg accumulation with age is progressive and likely not the result of increased thymic output, increased peripheral proliferation, or from enhanced peripheral conversion. Instead, we found that Treg from aged mice are more resistant to apoptosis than Treg from young mice. Although Treg from aged mice had increased expression of functional IL-7Rα, we found that IL-7R signaling was not required for maintenance of Treg in vivo. Notably, aged Treg exhibit decreased expression of the proapoptotic molecule Bim compared with Treg from young mice. Furthermore, in the absence of Bim, Treg accumulate rapidly, accounting for >25% of the CD4+ T cell compartment by 6 mo of age. Additionally, accumulation of Treg in Bim-deficient mice occurred after the cells left the transitional recent thymic emigrant compartment. Mechanistically, we show that IL-2 drives preferential proliferation and accumulation of Bimlo Treg. Collectively, our data suggest that chronic stimulation by IL-2 leads to preferential expansion of Treg having low expression of Bim, which favors their survival and accumulation in aged hosts.


Journal of Immunology | 2011

BCL-2 allows effector and memory CD8+ T cells to tolerate higher expression of BIM

Sema Kurtulus; Pulak Tripathi; Maria E. Moreno-Fernandez; Allyson Sholl; Jonathan D. Katz; H. Leighton Grimes; David A. Hildeman

As acute infections resolve, most effector CD8+ T cells die, whereas some persist and become memory T cells. Recent work showed that subsets of effector CD8+ T cells, identified by reciprocal expression of killer cell lectin-like receptor G1 (KLRG1) and CD127, have different lifespans. Similar to previous reports, we found that effector CD8+ T cells reported to have a longer lifespan (i.e., KLRG1lowCD127high) have increased levels of Bcl-2 compared with their shorter-lived KLRG1highCD127low counterparts. Surprisingly, we found that these effector KLRG1lowCD127high CD8+ T cells also had increased levels of Bim compared with KLRG1highCD127low cells. Similar effects were observed in memory cells, in which CD8+ central memory T cells expressed higher levels of Bim and Bcl-2 than did CD8+ effector memory T cells. Using both pharmacologic and genetic approaches, we found that survival of both subsets of effector and memory CD8+ T cells required Bcl-2 to combat the proapoptotic activity of Bim. Interestingly, inhibition or absence of Bcl-2 led to significantly decreased expression of Bim in surviving effector and memory T cells. In addition, manipulation of Bcl-2 levels by IL-7 or IL-15 also affected expression of Bim in effector CD8+ T cells. Finally, we found that Bim levels were significantly increased in effector CD8+ T cells lacking Bax and Bak. Together, these data indicate that cells having the highest levels of Bim are selected against during contraction of the response and that Bcl-2 determines the level of Bim that effector and memory T cells can tolerate.


Journal of Virology | 2009

Gamma Interferon Signaling in Macrophage Lineage Cells Regulates Central Nervous System Inflammation and Chemokine Production

Adora A. Lin; Pulak Tripathi; Allyson Sholl; Michael B. Jordan; David A. Hildeman

ABSTRACT Intracranial (i.c.) infection of mice with lymphocytic choriomeningitis virus (LCMV) results in anorexic weight loss, mediated by T cells and gamma interferon (IFN-γ). Here, we assessed the role of CD4+ T cells and IFN-γ on immune cell recruitment and proinflammatory cytokine/chemokine production in the central nervous system (CNS) after i.c. LCMV infection. We found that T-cell-depleted mice had decreased recruitment of hematopoietic cells to the CNS and diminished levels of IFN-γ, CCL2 (MCP-1), CCL3 (MIP-1α), and CCL5 (RANTES) in the cerebrospinal fluid (CSF). Mice deficient in IFN-γ had decreased CSF levels of CCL3, CCL5, and CXCL10 (IP-10), and decreased activation of both resident CNS and infiltrating antigen-presenting cells (APCs). The effects of IFN-γ signaling on macrophage lineage cells was assessed using transgenic mice, called “macrophages insensitive to interferon gamma” (MIIG) mice, that express a dominant-negative IFN-γ receptor under the control of the CD68 promoter. MIIG mice had decreased levels of CCL2, CCL3, CCL5, and CXCL10 compared to controls despite having normal numbers of LCMV-specific CD4+ T cells in the CNS. MIIG mice also had decreased recruitment of infiltrating macrophages and decreased activation of both resident CNS and infiltrating APCs. Finally, MIIG mice were significantly protected from LCMV-induced anorexia and weight loss. Thus, these data suggest that CD4+ T-cell production of IFN-γ promotes signaling in macrophage lineage cells, which control (i) the production of proinflammatory cytokines and chemokines, (ii) the recruitment of macrophages to the CNS, (iii) the activation of resident CNS and infiltrating APC populations, and (iv) anorexic weight loss.


Frontiers in Immunology | 2013

IL-15 Fosters Age-Driven Regulatory T Cell Accrual in the Face of Declining IL-2 Levels.

Jana Raynor; Allyson Sholl; David R. Plas; Claire A. Chougnet; David A. Hildeman

We and others have shown that regulatory T cells (Treg) accumulate dramatically with age in both humans and mice. Such Treg accrual contributes to age-related immunosenescence as they reduce the response to tumors and parasite infection. While we reported earlier that aged Treg have decreased expression of the pro-apoptotic molecule Bim and germline deletion of Bim promoted earlier accumulation of Treg, it remains unclear whether the effects of Bim are: (i) Treg intrinsic and (ii) dominant to other BH3-only pro-apoptotic molecules. Further, the mechanism(s) controlling Bim expression in aged Treg remain unclear. Here we show that Treg-specific loss of Bim is sufficient to drive Treg accrual with age and that additional loss of the downstream apoptotic effectors Bax and Bak did not exacerbate Treg accumulation. Further, our results demonstrate that a subpopulation of Treg expands with age and is characterized by lower expression of CD25 (IL-2Rα) and Bim. Mechanistically, we found that IL-2 levels decline with age and likely explain the emergence of CD25loBimlo Treg because Treg in IL-2−/− mice are almost entirely comprised of CD25loBimlo cells, and IL-2 neutralization increases CD25loBimlo Treg in both young and middle-aged mice. Interestingly, the Treg population in aged mice had increased expression of CD122 (IL-2/IL-15Rβ) and neutralization or genetic loss of IL-15 led to less Treg accrual with age. Further, the decreased Treg accrual in middle-aged IL-15−/− mice was restored by the additional loss of Bim (IL-15−/−Bim−/−). Together, our data show that aging favors the accrual of CD25lo Treg whose homeostasis is supported by IL-15 as IL-2 levels become limiting. These data have implications for manipulating Treg to improve immune responses in the elderly.


Molecular Therapy | 2013

VEGF Blockade Enables Oncolytic Cancer Virotherapy in Part by Modulating Intratumoral Myeloid Cells

Mark A. Currier; Francis Eshun; Allyson Sholl; Artur Chernoguz; Kelly Crawford; Senad Divanovic; Louis Boon; William F. Goins; Jason S. Frischer; Margaret H. Collins; Jennifer L. Leddon; William H. Baird; Amy Haseley; Keri A. Streby; Pin Yi Wang; Brett W. Hendrickson; Rolf A. Brekken; Balveen Kaur; David A. Hildeman; Timothy P. Cripe

Understanding the host response to oncolytic viruses is important to maximize their antitumor efficacy. Despite robust cytotoxicity and high virus production of an oncolytic herpes simplex virus (oHSV) in cultured human sarcoma cells, intratumoral (ITu) virus injection resulted in only mild antitumor effects in some xenograft models, prompting us to characterize the host inflammatory response. Virotherapy induced an acute neutrophilic infiltrate, a relative decrease of ITu macrophages, and a myeloid cell-dependent upregulation of host-derived vascular endothelial growth factor (VEGF). Anti-VEGF antibodies, bevacizumab and r84, the latter of which binds VEGF and selectively inhibits binding to VEGF receptor-2 (VEGFR2) but not VEGFR1, enhanced the antitumor effects of virotherapy, in part due to decreased angiogenesis but not increased virus production. Neither antibody affected neutrophilic infiltration but both partially mitigated virus-induced depletion of macrophages. Enhancement of virotherapy-mediated antitumor effects by anti-VEGF antibodies could largely be recapitulated by systemic depletion of CD11b(+) cells. These data suggest the combined effect of oHSV virotherapy and anti-VEGF antibodies is in part due to modulation of a host inflammatory reaction to virus. Our data provide strong preclinical support for combined oHSV and anti-VEGF antibody therapy and suggest that understanding and counteracting the innate host response may help enable the full antitumor potential of oncolytic virotherapy.


The Journal of Allergy and Clinical Immunology | 2015

IL-10/Janus kinase/signal transducer and activator of transcription 3 signaling dysregulates Bim expression in autoimmune lymphoproliferative syndrome.

Omar Niss; Allyson Sholl; Jack Bleesing; David A. Hildeman

BACKGROUND Autoimmune lymphoproliferative syndrome (ALPS) is a human disorder of T cell homeostasis caused by mutations that impair FAS-mediated apoptosis. A defining characteristic of ALPS is the expansion of double negative T cells (DNTC). Relatively little is known about how defective FAS-driven cell death and the Bcl-2 apoptotic pathway intersect in ALPS patients. OBJECTIVE We studied changes in Bcl-2 family member expression in ALPS to determine whether the Bcl-2 pathway might provide a therapeutic target. METHODS We used flow cytometry to analyze the expression of pro- and anti-apoptotic Bcl-2 family members in T cells from 12 ALPS patients and determined the in vitro sensitivity of ALPS DNTC to the pro-apoptotic BH3 mimetic, ABT-737. RESULTS The pro-apoptotic molecule, Bim, was significantly elevated in DNTC. Although no general pattern of individual anti-apoptotic Bcl-2 family members emerged, increased expression of Bim was always accompanied by increased expression of at least 1 anti-apoptotic Bcl-2 family member. Strikingly, Bim levels in DNTC correlated significantly with serum IL-10 in ALPS patients, and IL-10 was sufficient to mildly induce Bim in normal and ALPS T cells via a Janus kinase/signal transducer and activator of transcription 3-dependent mechanism. Finally, ABT-737 preferentially killed ALPS DNTC in vitro. CONCLUSION Combined, these data show that an IL-10/Janus kinase/signal transducer and activator of transcription 3 pathway drives Bim expression in ALPS DNTC, which renders them sensitive to BH3 mimetics, uncovering a potentially novel therapeutic approach to ALPS.


Clinical Immunology | 2011

Divergent effects of calcineurin Aβ on regulatory and conventional T-cell homeostasis.

Thomas Doetschman; Allyson Sholl; Hwu dau rw Chen; Connie Gard; David A. Hildeman; Ramireddy Bommireddy

Calcineurin (CN) is a phosphatase that activates nuclear factor of activated T cells (NFAT). While the CN inhibitors cyclosporine A (CsA) and tacrolimus (FK506) can prevent graft rejection, they also cause inflammatory diseases. We investigated the role of calcineurin using mice deficient in the CN catalytic subunit Aβ (CNAβ). Cnab(-/-) mice exhibit defective thymocyte maturation, splenomegaly and hepatomegaly. Further, as Cnab(-/-) mice age, they exhibit spontaneous T-cell activation and enhanced production of proinflammatory cytokines (IL-4, IL-6, and IFNγ). FOXP3(+) T(reg) cells were significantly decreased in Cnab(-/-) mice likely contributing to increased T-cell activation. Interestingly, we found that CNAβ is critical for promotion of BCL-2 expression in FOXP3(+) T(reg) and for permitting TGFβ signaling, as TGFβ induces FOXP3 in control but not in Cnab(-/-) T-cells. Together, these data suggest that CNAβ is important for the production and maintenance of T(reg) cells and to ensure mature T-cell quiescence.


Cell Death & Differentiation | 2015

Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins.

Kurtulus S; Allyson Sholl; Jesse G. Toe; Tripathi P; Jana Raynor; Kun-Po Li; Marc Pellegrini; David A. Hildeman

During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential.


PLOS Pathogens | 2017

Tissue-specific control of latent CMV reactivation by regulatory T cells

Maha Almanan; Jana Raynor; Allyson Sholl; Mei Wang; Claire A. Chougnet; Rhonda D. Cardin; David A. Hildeman

Cytomegalovirus (CMV) causes a persistent, lifelong infection. CMV persists in a latent state and undergoes intermittent subclinical viral reactivation that is quelled by ongoing T cell responses. While T cells are critical to maintain control of infection, the immunological factors that promote CMV persistence remain unclear. Here, we investigated the role of regulatory T cells (Treg) in a mouse model of latent CMV infection using Foxp3-diphtheria toxin receptor (Foxp3-DTR) mice. Eight months after infection, MCMV had established latency in the spleen, salivary gland, lung, and pancreas, which was accompanied by an increased frequency of Treg. Administration of diphtheria toxin (DT) after establishment of latency efficiently depleted Treg and drove a significant increase in the numbers of functional MCMV-specific CD4+ and CD8+ T cells. Strikingly, Treg depletion decreased the number of animals with reactivatable latent MCMV in the spleen. Unexpectedly, in the same animals, ablation of Treg drove a significant increase in viral reactivation in the salivary gland that was accompanied with augmented local IL-10 production by Foxp3-CD4+T cells. Further, neutralization of IL-10 after Treg depletion significantly decreased viral load in the salivary gland. Combined, these data show that Treg have divergent control of MCMV infection depending upon the tissue. In the spleen, Treg antagonize CD8+ effector function and promote viral persistence while in the salivary gland Treg prevent IL-10 production and limit viral reactivation and replication. These data provide new insights into the organ-specific roles of Treg in controlling the reactivation of latent MCMV infection.

Collaboration


Dive into the Allyson Sholl's collaboration.

Top Co-Authors

Avatar

David A. Hildeman

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pulak Tripathi

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jana Raynor

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sema Kurtulus

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Claire A. Chougnet

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kasper Hoebe

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adora A. Lin

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

David R. Plas

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Fred D. Finkelman

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

H. Leighton Grimes

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge