Almudena Eustaquio-Martín
University of Salamanca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Almudena Eustaquio-Martín.
Jaro-journal of The Association for Research in Otolaryngology | 2006
Enrique A. Lopez-Poveda; Almudena Eustaquio-Martín
The term peripheral auditory compression refers to the fact that the whole range of audible sound pressure levels is mapped into a narrower range of auditory nerve responses. Peripheral compression is the by-product of independent compressive processes occurring at the level of the basilar membrane, the inner hair cell (IHC), and the auditory nerve synapse. Here, an electrical-circuit equivalent of an IHC is used to look into the compression contributed by the IHC. The model includes a mechanically driven transducer potassium (K+) conductance and two time- and voltage-dependent basolateral K+ conductances: one with fast and one with slow kinetics. Special attention is paid to faithfully implement the activation kinetics of these basolateral conductances. Optimum model parameters are provided to account for previously reported in vitro observations that demonstrate the compression associated with the gating of the transducer and of the basolateral channels. Without having to readjust its parameters, the model also accounts for the in vivo nonlinear IHC transfer characteristics. Model simulations are then used to investigate the relative contribution of the transducer and basolateral K+ currents to the nonlinear IHC input/output functions in vivo. The simulations suggest that the voltage-dependent activation of the basolateral currents compresses the DC potential for stereocilia displacements above approximately 5xa0nm. The degree of compression exceeds 2-to-1 and is similar for all stimulation frequencies. The AC potential is compressed in a similar way, but only for frequencies below 800xa0Hz. The simulations further suggest that the nonlinear gating of the transducer current is responsible for the expansive growth of the DC potential with increasing sound level (slope of 2xa0dB/dB) at low sound pressure levels.
Jaro-journal of The Association for Research in Otolaryngology | 2011
Almudena Eustaquio-Martín; Enrique A. Lopez-Poveda
The tuning of a linear filter may be inferred from the filter’s isoresponse (e.g., tuning curves) or isoinput (e.g., isolevel curves) characteristics. This paper provides a theoretical demonstration that for nonlinear filters with compressive response characteristics like those of the basilar membrane, isoresponse measures can suggest strikingly sharper tuning than isoinput measures. The practical significance of this phenomenon is demonstrated by inferring the 3-dB-down bandwidths (BW3dB) of human auditory filters at 500 and 4,000xa0Hz from behavioral isoresponse and isoinput measures obtained with sinusoidal and notched noise forward maskers. Inferred cochlear responses were compressive for the two types of maskers. Consistent with expectations, low-level BW3dB estimates obtained from isoresponse conditions were considerably narrower than those obtained from isolevel conditions: 69 vs. 174xa0Hz, respectively, at 500xa0Hz, and 280 vs. 464xa0Hz, respectively, at 4,000xa0Hz. Furthermore, isoresponse BW3dB decreased with increasing level while corresponding isolevel estimates remained approximately constant at 500xa0Hz or increased slightly at 4xa0kHz. It is suggested that comparisons between isoresponse supra-threshold human tuning and threshold animal neural tuning should be made with caution.
Jaro-journal of The Association for Research in Otolaryngology | 2013
Enzo Aguilar; Almudena Eustaquio-Martín; Enrique A. Lopez-Poveda
Medial olivocochlear efferent neurons can control cochlear frequency selectivity and may be activated in a reflexive manner by contralateral sounds. The present study investigated the significance of the contralateral medial olivocochlear reflex (MOCR) on human psychoacoustical tuning curves (PTCs), a behavioral correlate of cochlear tuning curves. PTCs were measured using forward masking in the presence and in the absence of a contralateral white noise, assumed to elicit the MOCR. To assess MOCR effects on apical and basal cochlear regions over a wide range of sound levels, PTCs were measured for probe frequencies of 500xa0Hz and 4xa0kHz and for near- and suprathreshold conditions. Results show that the contralateral noise affected the PTCs predominantly at 500xa0Hz. At near-threshold levels, its effect was obvious only for frequencies in the tails of the PTCs; at suprathreshold levels, its effects were obvious for all frequencies. It was verified that the effects were not due to the contralateral noise activating the middle-ear muscle reflex or changing the postmechanical rate of recovery from forward masking. A phenomenological computer model of forward masking with efferent control was used to explain the data. The model supports the hypothesis that the behavioral results were due to the contralateral noise reducing apical cochlear gain in a frequency- and level-dependent manner consistent with physiological evidence. Altogether, this shows that the contralateral MOCR may be changing apical cochlear responses in natural, binaural listening situations.
Jaro-journal of The Association for Research in Otolaryngology | 2013
Enrique A. Lopez-Poveda; Almudena Eustaquio-Martín
In signal processing terms, the operation of the mammalian cochlea in the inner ear may be likened to a bank of filters. Based on otoacoustic emission evidence, it has been recently claimed that cochlear tuning is sharper for human than for other mammals. The claim was corroborated with a behavioral method that involves the masking of pure tones with forward notched noises (NN). Using this method, it has been further claimed that human cochlear tuning is sharper than suggested by earlier behavioral studies. These claims are controversial. Here, we contribute to the controversy by theoretically assessing the accuracy of the NN method at inferring the bandwidth (BW) of nonlinear cochlear filters. Behavioral forward masking was mimicked using a computer model of the squared basilar membrane response followed by a temporal integrator. Isoresponse and isolevel versions of the forward masking NN method were applied to infer the already known BW of the cochlear filter used in the model. We show that isolevel methods were overall more accurate than isoresponse methods. We also show that BWs for NNs and sinusoids equate only for isolevel methods and when the levels of the two stimuli are appropriately scaled. Lastly, we show that the inferred BW depends on the method version (isolevel BW was twice as broad as isoresponse BW at 40 dB SPL) and on the stimulus level (isoresponse and isolevel BW decreased and increased, respectively, with increasing level over the level range where cochlear responses went from linear to compressive). We suggest that the latter may contribute to explaining the reported differences in cochlear tuning across behavioral studies and species. We further suggest that given the well-established nonlinear nature of cochlear responses, even greater care must be exercised when using a single BW value to describe and compare cochlear tuning.
Ear and Hearing | 2016
Enrique A. Lopez-Poveda; Almudena Eustaquio-Martín; Joshua S. Stohl; Robert D. Wolford; Reinhold Schatzer; Blake S. Wilson
Objectives: In natural hearing, cochlear mechanical compression is dynamically adjusted via the efferent medial olivocochlear reflex (MOCR). These adjustments probably help understanding speech in noisy environments and are not available to the users of current cochlear implants (CIs). The aims of the present study are to: (1) present a binaural CI sound processing strategy inspired by the control of cochlear compression provided by the contralateral MOCR in natural hearing; and (2) assess the benefits of the new strategy for understanding speech presented in competition with steady noise with a speech-like spectrum in various spatial configurations of the speech and noise sources. Design: Pairs of CI sound processors (one per ear) were constructed to mimic or not mimic the effects of the contralateral MOCR on compression. For the nonmimicking condition (standard strategy or STD), the two processors in a pair functioned similarly to standard clinical processors (i.e., with fixed back-end compression and independently of each other). When configured to mimic the effects of the MOCR (MOC strategy), the two processors communicated with each other and the amount of back-end compression in a given frequency channel of each processor in the pair decreased/increased dynamically (so that output levels dropped/increased) with increases/decreases in the output energy from the corresponding frequency channel in the contralateral processor. Speech reception thresholds in speech-shaped noise were measured for 3 bilateral CI users and 2 single-sided deaf unilateral CI users. Thresholds were compared for the STD and MOC strategies in unilateral and bilateral listening conditions and for three spatial configurations of the speech and noise sources in simulated free-field conditions: speech and noise sources colocated in front of the listener, speech on the left ear with noise in front of the listener, and speech on the left ear with noise on the right ear. In both bilateral and unilateral listening, the electrical stimulus delivered to the test ear(s) was always calculated as if the listeners were wearing bilateral processors. Results: In both unilateral and bilateral listening conditions, mean speech reception thresholds were comparable with the two strategies for colocated speech and noise sources, but were at least 2 dB lower (better) with the MOC than with the STD strategy for spatially separated speech and noise sources. In unilateral listening conditions, mean thresholds improved with increasing the spatial separation between the speech and noise sources regardless of the strategy but the improvement was significantly greater with the MOC strategy. In bilateral listening conditions, thresholds improved significantly with increasing the speech-noise spatial separation only with the MOC strategy. Conclusions: The MOC strategy (1) significantly improved the intelligibility of speech presented in competition with a spatially separated noise source, both in unilateral and bilateral listening conditions; (2) produced significant spatial release from masking in bilateral listening conditions, something that did not occur with fixed compression; and (3) enhanced spatial release from masking in unilateral listening conditions. The MOC strategy as implemented here, or a modified version of it, may be usefully applied in CIs and in hearing aids.
Advances in Experimental Medicine and Biology | 2016
Enrique A. Lopez-Poveda; Almudena Eustaquio-Martín; Joshua S. Stohl; Robert D. Wolford; Reinhold Schatzer; Blake S. Wilson
Our two ears do not function as fixed and independent sound receptors; their functioning is coupled and dynamically adjusted via the contralateral medial olivocochlear efferent reflex (MOCR). The MOCR possibly facilitates speech recognition in noisy environments. Such a role, however, is yet to be demonstrated because selective deactivation of the reflex during natural acoustic listening has not been possible for human subjects up until now. Here, we propose that this and other roles of the MOCR may be elucidated using the unique stimulus controls provided by cochlear implants (CIs). Pairs of sound processors were constructed to mimic or not mimic the effects of the contralateral MOCR with CIs. For the non-mimicking condition (STD strategy), the two processors in a pair functioned independently of each other. When configured to mimic the effects of the MOCR (MOC strategy), however, the two processors communicated with each other and the amount of compression in a given frequency channel of each processor in the pair decreased with increases in the output energy from the contralateral processor. The analysis of output signals from the STD and MOC strategies suggests that in natural binaural listening, the MOCR possibly causes a small reduction of audibility but enhances frequency-specific inter-aural level differences and the segregation of spatially non-overlapping sound sources. The proposed MOC strategy could improve the performance of CI and hearing-aid users.
Advances in Experimental Medicine and Biology | 2013
Enrique A. Lopez-Poveda; Enzo Aguilar; Peter T. Johannesen; Almudena Eustaquio-Martín
In binaural listening, the two cochleae do not act as independent sound receptors; their functioning is linked via the contralateral medial olivo-cochlear reflex (MOCR), which can be activated by contralateral sounds. The present study aimed at characterizing the effect of a contralateral white noise (CWN) on psychophysical tuning curves (PTCs). PTCs were measured in forward masking for probe frequencies of 500 Hz and 4 kHz, with and without CWN. The sound pressure level of the probe was fixed across conditions. PTCs for different response criteria were measured by using various masker-probe time gaps. The CWN had no significant effects on PTCs at 4 kHz. At 500 Hz, by contrast, PTCs measured with CWN appeared broader, particularly for short gaps, and they showed a decrease in the masker level. This decrease was greater the longer the masker-probe time gap. A computer model of forward masking with efferent control of cochlear gain was used to explain the data. The model accounted for the data based on the assumption that the sole effect of the CWN was to reduce the cochlear gain by ∼6.5 dB at 500 Hz for low and moderate levels. It also suggested that the pattern of data at 500 Hz is the result of combined broad bandwidth of compression and off-frequency listening. Results are discussed in relation with other physiological and psychoacoustical studies on the effect of activation of MOCR on cochlear function.
Hearing Research | 2017
Enrique A. Lopez-Poveda; Almudena Eustaquio-Martín; Joshua S. Stohl; Robert D. Wolford; Reinhold Schatzer; José M. Gorospe; Santiago Santa Cruz Ruiz; Fernando Benito; Blake S. Wilson
ABSTRACT We have recently proposed a binaural cochlear implant (CI) sound processing strategy inspired by the contralateral medial olivocochlear reflex (the MOC strategy) and shown that it improves intelligibility in steady‐state noise (Lopez‐Poveda et al., 2016, Ear Hear 37:e138‐e148). The aim here was to evaluate possible speech‐reception benefits of the MOC strategy for speech maskers, a more natural type of interferer. Speech reception thresholds (SRTs) were measured in six bilateral and two single‐sided deaf CI users with the MOC strategy and with a standard (STD) strategy. SRTs were measured in unilateral and bilateral listening conditions, and for target and masker stimuli located at azimuthal angles of (0°, 0°), (−15°, +15°), and (−90°, +90°). Mean SRTs were 2–5 dB better with the MOC than with the STD strategy for spatially separated target and masker sources. For bilateral CI users, the MOC strategy (1) facilitated the intelligibility of speech in competition with spatially separated speech maskers in both unilateral and bilateral listening conditions; and (2) led to an overall improvement in spatial release from masking in the two listening conditions. Insofar as speech is a more natural type of interferer than steady‐state noise, the present results suggest that the MOC strategy holds potential for promising outcomes for CI users. HIGHLIGHTSBenefits of a novel binaural cochlear implant sound‐coding strategy are reported.The strategy improves intelligibility and spatial masking release in speech interferers.For single‐sided deaf implant users, benefits occur in unilateral listening.For bilateral implant users, benefits occur in unilateral and bilateral listening.The strategy holds potential for promising outcomes for implant users.
The Journal of Neuroscience | 2018
Miriam I. Marrufo-Pérez; Almudena Eustaquio-Martín; Enrique A. Lopez-Poveda
Sensory systems constantly adapt their responses to the current environment. In hearing, adaptation may facilitate communication in noisy settings, a benefit frequently (but controversially) attributed to the medial olivocochlear reflex (MOCR) enhancing the neural representation of speech. Here, we show that human listeners (N = 14; five male) recognize more words presented monaurally in ipsilateral, contralateral, and bilateral noise when they are given some time to adapt to the noise. This finding challenges models and theories that claim that speech intelligibility in noise is invariant over time. In addition, we show that this adaptation to the noise occurs also for words processed to maintain the slow-amplitude modulations in speech (the envelope) disregarding the faster fluctuations (the temporal fine structure). This demonstrates that noise adaptation reflects an enhancement of amplitude modulation speech cues and is unaffected by temporal fine structure cues. Last, we show that cochlear implant users (N = 7; four male) show normal monaural adaptation to ipsilateral noise. Because the electrical stimulation delivered by cochlear implants is independent from the MOCR, this demonstrates that noise adaptation does not require the MOCR. We argue that noise adaptation probably reflects adaptation of the dynamic range of auditory neurons to the noise level statistics. SIGNIFICANCE STATEMENT People find it easier to understand speech in noisy environments when they are given some time to adapt to the noise. This benefit is frequently but controversially attributed to the medial olivocochlear efferent reflex enhancing the representation of speech cues in the auditory nerve. Here, we show that the adaptation to noise reflects an enhancement of the slow fluctuations in amplitude over time that are present in speech. In addition, we show that adaptation to noise for cochlear implant users is not statistically different from that for listeners with normal hearing. Because the electrical stimulation delivered by cochlear implants is independent from the medial olivocochlear efferent reflex, this demonstrates that adaptation to noise does not require this reflex.
Jaro-journal of The Association for Research in Otolaryngology | 2018
Miriam I. Marrufo-Pérez; Almudena Eustaquio-Martín; Luis E. López-Bascuas; Enrique A. Lopez-Poveda
The amplitude modulations (AMs) in speech signals are useful cues for speech recognition. Several adaptation mechanisms may make the detection of AM in noisy backgrounds easier when the AM carrier is presented later rather than earlier in the noise. The aim of the present study was to characterize temporal adaptation to noise in AM detection. AM detection thresholds were measured for monaural (50xa0ms, 1.5xa0kHz) pure-tone carriers presented at the onset (‘early’ condition) and 300xa0ms after the onset (‘late’ condition) of ipsilateral, contralateral, and bilateral (diotic) broadband noise, as well as in quiet. Thresholdsxa0were 2–4xa0dB better in the late than in the early condition for the three noise lateralities. The temporal effect held for carriers at equal sensation levels, confirming that it was not due to overshoot on carrier audibility. The temporal effect was larger for broadband than for low-band contralateral noises. Many aspects in the results were consistent with the noise activating the medial olivocochlear reflex (MOCR) and enhancing AM depth in the peripheral auditory response. Other aspects, however, indicate that central masking and adaptation unrelated to the MOCR also affect both carrier-tone and AM detection and are involved in the temporal effects.