Peter T. Johannesen
University of Salamanca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter T. Johannesen.
Journal of the Acoustical Society of America | 2008
Peter T. Johannesen; Enrique A. Lopez-Poveda
The aim was to investigate the correlation between compression exponent, compression threshold, and cochlear gain for normal-hearing subjects as inferred from temporal masking curves (TMCs) and distortion-product otoacoustic emission (DPOAEs) input-output (I/O) curves. Care was given to reduce the influence of DPOAE fine structure on the DPOAE I/O curves. A high correlation between compression exponent estimates obtained with the two methods was found at 4 kHz but not at 0.5 and 1 kHz. One reason is that the DPOAE I/O curves show plateaus or notches that result in unexpectedly high compression estimates. Moderately high correlation was found between compression threshold estimates obtained with the two methods, although DPOAE-based values were around 7 dB lower than those based on TMCs. Both methods show that compression exponent and threshold are approximately constant across the frequency range from 0.5 to 4 kHz. Cochlear gain as estimated from TMCs was found to be approximately 16 dB greater at 4 than at 0.5 kHz. In conclusion, DPOAEs and TMCs may be used interchangeably to infer precise individual nonlinear cochlear characteristics at 4 kHz, but it remains unclear that the same applies to lower frequencies.
Frontiers in Neuroscience | 2014
Peter T. Johannesen; Patricia Pérez-González; Enrique A. Lopez-Poveda
Identifying the multiple contributors to the audiometric loss of a hearing impaired (HI) listener at a particular frequency is becoming gradually more useful as new treatments are developed. Here, we infer the contribution of inner (IHC) and outer hair cell (OHC) dysfunction to the total audiometric loss in a sample of 68 hearing aid candidates with mild-to-severe sensorineural hearing loss, and for test frequencies of 0.5, 1, 2, 4, and 6 kHz. It was assumed that the audiometric loss (HLTOTAL) at each test frequency was due to a combination of cochlear gain loss, or OHC dysfunction (HLOHC), and inefficient IHC processes (HLIHC), all of them in decibels. HLOHC and HLIHC were estimated from cochlear I/O curves inferred psychoacoustically using the temporal masking curve (TMC) method. 325 I/O curves were measured and 59% of them showed a compression threshold (CT). The analysis of these I/O curves suggests that (1) HLOHC and HLIHC account on average for 60–70 and 30–40% of HLTOTAL, respectively; (2) these percentages are roughly constant across frequencies; (3) across-listener variability is large; (4) residual cochlear gain is negatively correlated with hearing loss while residual compression is not correlated with hearing loss. Altogether, the present results support the conclusions from earlier studies and extend them to a wider range of test frequencies and hearing-loss ranges. Twenty-four percent of I/O curves were linear and suggested total cochlear gain loss. The number of linear I/O curves increased gradually with increasing frequency. The remaining 17% I/O curves suggested audiometric losses due mostly to IHC dysfunction and were more frequent at low (≤1 kHz) than at high frequencies. It is argued that in a majority of listeners, hearing loss is due to a common mechanism that concomitantly alters IHC and OHC function and that IHC processes may be more labile in the apex than in the base.
Trends in hearing | 2016
Peter T. Johannesen; Patricia Pérez-González; Sridhar Kalluri; José L. Jiménez Blanco; Enrique A. Lopez-Poveda
The aim of this study was to assess the relative importance of cochlear mechanical dysfunction, temporal processing deficits, and age on the ability of hearing-impaired listeners to understand speech in noisy backgrounds. Sixty-eight listeners took part in the study. They were provided with linear, frequency-specific amplification to compensate for their audiometric losses, and intelligibility was assessed for speech-shaped noise (SSN) and a time-reversed two-talker masker (R2TM). Behavioral estimates of cochlear gain loss and residual compression were available from a previous study and were used as indicators of cochlear mechanical dysfunction. Temporal processing abilities were assessed using frequency modulation detection thresholds. Age, audiometric thresholds, and the difference between audiometric threshold and cochlear gain loss were also included in the analyses. Stepwise multiple linear regression models were used to assess the relative importance of the various factors for intelligibility. Results showed that (a) cochlear gain loss was unrelated to intelligibility, (b) residual cochlear compression was related to intelligibility in SSN but not in a R2TM, (c) temporal processing was strongly related to intelligibility in a R2TM and much less so in SSN, and (d) age per se impaired intelligibility. In summary, all factors affected intelligibility, but their relative importance varied across maskers.
Frontiers in Systems Neuroscience | 2015
Enzo Aguilar; Peter T. Johannesen; Enrique A. Lopez-Poveda
The present study aimed at characterizing the suppressing effect of contralateral medial olivocochlear (MOC) efferents on human auditory sensitivity and mechanical cochlear responses at sound levels near behavioral thresholds. Absolute thresholds for pure tones of 500 and 4000 Hz with durations between 10–500 ms were measured in the presence and in the absence of a contralateral broadband noise. The intensity of the noise was fixed at 60 dB SPL to evoke the contralateral MOC reflex without evoking the middle-ear muscle reflex. In agreement with previously reported findings, thresholds measured without the contralateral noise decreased with increasing tone duration, and the rate of decrease was faster at 500 than at 4000 Hz. Contralateral stimulation increased thresholds by 1.07 and 1.72 dB at 500 and 4000 Hz, respectively. The mean increase (1.4 dB) just missed statistical significance (p = 0.08). Importantly, the across-frequency mean threshold increase was significantly greater for long than for short probes. This effect was more obvious at 4000 Hz than at 500 Hz. Assuming that thresholds depend on the MOC-dependent cochlear mechanical response followed by an MOC-independent, post-mechanical detection mechanism, the present results at 4000 Hz suggest that MOC efferent activation suppresses cochlear mechanical responses more at lower than at higher intensities across the range of intensities near threshold, while the results at 500 Hz suggest comparable mechanical suppression across the threshold intensity range. The results are discussed in the context of central masking and of auditory models of efferent suppression of cochlear mechanical responses.
Journal of the Acoustical Society of America | 2010
Peter T. Johannesen; Enrique A. Lopez-Poveda
Previous studies have shown a high within-subject correspondence between distortion product otoacoustic emission (DPOAE) input/output (I/O) curves and behaviorally inferred basilar membrane (BM) I/O curves for frequencies above approximately 2 kHz. For lower frequencies, DPOAE I/O curves contained notches and plateaus that did not have a counterpart in corresponding behavioral curves. It was hypothesized that this might improve by using individualized optimal DPOAE primary levels. Here, data from previous studies are re-analyzed to test this hypothesis by comparing behaviorally inferred BM I/O curves and DPOAE I/O curves measured with well-established group-average primary levels and two individualized primary level rules: one optimized to maximize DPOAE levels and one intended for primaries to evoke comparable BM responses at the f(2) cochlear region. Test frequencies were 0.5, 1, and 4 kHz. Behavioral I/O curves were obtained from temporal (forward) masking curves. Results showed high within-subject correspondence between behavioral and DPOAE I/O curves at 4 kHz only, regardless of the primary level rule. Plateaus and notches were equally common in low-frequency DPOAE I/O curves for individualized and group-average DPOAE primary levels at 0.5 and 1 kHz. Results are discussed in terms of the adequacy of DPOAE I/O curves for inferring individual cochlear nonlinearity characteristics.
Advances in Experimental Medicine and Biology | 2013
Enrique A. Lopez-Poveda; Enzo Aguilar; Peter T. Johannesen; Almudena Eustaquio-Martín
In binaural listening, the two cochleae do not act as independent sound receptors; their functioning is linked via the contralateral medial olivo-cochlear reflex (MOCR), which can be activated by contralateral sounds. The present study aimed at characterizing the effect of a contralateral white noise (CWN) on psychophysical tuning curves (PTCs). PTCs were measured in forward masking for probe frequencies of 500 Hz and 4 kHz, with and without CWN. The sound pressure level of the probe was fixed across conditions. PTCs for different response criteria were measured by using various masker-probe time gaps. The CWN had no significant effects on PTCs at 4 kHz. At 500 Hz, by contrast, PTCs measured with CWN appeared broader, particularly for short gaps, and they showed a decrease in the masker level. This decrease was greater the longer the masker-probe time gap. A computer model of forward masking with efferent control of cochlear gain was used to explain the data. The model accounted for the data based on the assumption that the sole effect of the CWN was to reduce the cochlear gain by ∼6.5 dB at 500 Hz for low and moderate levels. It also suggested that the pattern of data at 500 Hz is the result of combined broad bandwidth of compression and off-frequency listening. Results are discussed in relation with other physiological and psychoacoustical studies on the effect of activation of MOCR on cochlear function.
Trends in hearing | 2017
Enrique A. Lopez-Poveda; Peter T. Johannesen; Patricia Pérez-González; José L. Jiménez Blanco; Sridhar Kalluri; Brent Edwards
Over 360 million people worldwide suffer from disabling hearing loss. Most of them can be treated with hearing aids. Unfortunately, performance with hearing aids and the benefit obtained from using them vary widely across users. Here, we investigate the reasons for such variability. Sixty-eight hearing-aid users or candidates were fitted bilaterally with nonlinear hearing aids using standard procedures. Treatment outcome was assessed by measuring aided speech intelligibility in a time-reversed two-talker background and self-reported improvement in hearing ability. Statistical predictive models of these outcomes were obtained using linear combinations of 19 predictors, including demographic and audiological data, indicators of cochlear mechanical dysfunction and auditory temporal processing skills, hearing-aid settings, working memory capacity, and pretreatment self-perceived hearing ability. Aided intelligibility tended to be better for younger hearing-aid users with good unaided intelligibility in quiet and with good temporal processing abilities. Intelligibility tended to improve by increasing amplification for low-intensity sounds and by using more linear amplification for high-intensity sounds. Self-reported improvement in hearing ability was hard to predict but tended to be smaller for users with better working memory capacity. Indicators of cochlear mechanical dysfunction, alone or in combination with hearing settings, did not affect outcome predictions. The results may be useful for improving hearing aids and setting patients’ expectations.
Archive | 2010
Enrique A. Lopez-Poveda; Peter T. Johannesen
When two pure tones (or primaries) of slightly different frequencies (f 1 and f 2; f 2 > f 1) are presented to the ear, new frequency components not present in the stimulus may be recorded in the ear canal. These new components are termed distortion product otoacoustic emissions (DPOAEs) and are generated by nonlinear interaction of the primaries within the cochlea. It has been conjectured that the level of the 2f 1 − f 2 DPOAE component is maximal when the primaries produce approximately equal excitation at the f 2 cochlear region because this is where and when the overlap between the traveling waves evoked by the two primaries is maximal. This region, however, almost certainly shifts as the level of the primaries increases following the well-known level-dependent shift of the cochlear traveling-wave peak. Furthermore, mutual suppression between the primaries may also affect the combination of primary levels that maximizes the DPOAE levels. This report summarizes our attempts to test these conjectures using psychophysical masking methods that are commonly applied to infer human cochlear responses. Test frequencies of 0.5, 1 and 4 kHz and a fixed frequency ratio of f 2/f 1 = 1.2 were considered. Results supported that maximal-level DPOAEs occur when the primaries produce comparable excitation at the cochlear site with CF ∼ f 2. They also suggest that the site of maximum interaction hardly shifts with increasing primary level and that mutual suppression between the primaries does not affect significantly the optimal DPOAE primary level rule.
Journal of the Acoustical Society of America | 2010
Enrique A. Lopez-Poveda; Peter T. Johannesen; Patricia Prez‐González; Jorge M. Mndez; Almudena Eustaquio-Martín
Hearing aids (HAs) are designed and fitted mainly to restore normal audibility and loudness growth. Unfortunately, after decades of research, many users still find them frustrating. We hypothesize that this is partly because HAs operate on the assumption that cochlear hearing loss is always associated with a reduction in cochlear gain and/or compression when this, in fact, need not be the case. Indeed, recent studies have shown that cochlear hearing loss frequently relates to selective or combined dysfunction of inner hair cells (IHCs) and outer hair cells (OHCs). Neither absolute thresholds nor loudness growth allows for a differential assessment of the type of hair cell damage, yet such assessment could be highly informative for optimizing HA design and fitting. In this presentation, we summarize our progress in designing a fast, universal method for inferring the degree of IHC and OHC dysfunction using distortion‐product otoacoustic emission input/output functions. We also describe our progress in desi...
Journal of the Acoustical Society of America | 2008
Enrique A. Lopez-Poveda; Peter T. Johannesen
The standard procedure for measuring distortion‐product otoacoustic emission (DPOAEs) input/output (I/O) curves involves using primaries whose levels conform to the rule of Kummer [Kummer et al., J. Acoust. Soc. Am. 103, 3431‐44 (1998)]. The assumption is that the DP originates at the F2 cochlear site and primaries that conform to this rule produce equal excitation at that site, which maximizes the DP amplitude. These ideas were tested psychophysically by measuring temporal masking curves (TMCs) for masker frequencies equal to the primary frequencies. A TMC‐based level rule was obtained by plotting the levels of the F1 masker against those for the F2 one for corresponding masker‐probe intervals. DPOAE I/O curves were then measured using the Kummer rule, the TMC‐based rule, and primary levels optimized individually to maximize DP amplitude. DPOAEs for the TMC‐based and the Kummer rule had statistically similar amplitudes, but they were both lower than those measured with individually‐optimized levels. This...