Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrique A. Lopez-Poveda is active.

Publication


Featured researches published by Enrique A. Lopez-Poveda.


Journal of the Acoustical Society of America | 2001

A human nonlinear cochlear filterbank

Enrique A. Lopez-Poveda; Ray Meddis

Some published cochlear filterbanks are nonlinear but are fitted to animal basilar membrane (BM) responses. Others, like the gammatone, are based on human psychophysical data, but are linear. In this article, a human nonlinear filterbank is constructed by adapting a computational model of animal BM physiology to simulate human BM nonlinearity as measured by psychophysical pulsation-threshold experiments. The approach is based on a dual-resonance nonlinear type of filter whose basic structure was modeled using animal observations. In modeling the pulsation threshold data, the main assumption is that pulsation threshold occurs when the signal and the masker produce comparable excitation, that is the same filter output, at the place of the BM best tuned to the signal frequency. The filter is fitted at a discrete number of best frequencies (BFs) for which psychophysical data are available for a single listener and for an average response of six listeners. The filterbank is then created by linear regression of the resulting parameters to intermediate BFs. The strengths and limitations of the resulting filterbank are discussed. Its suitability for simulating hearing-impaired cochlear responses is also discussed.


Journal of the Acoustical Society of America | 2001

A computational algorithm for computing nonlinear auditory frequency selectivity.

Ray Meddis; Lowel P. O’Mard; Enrique A. Lopez-Poveda

Computational algorithms that mimic the response of the basilar membrane must be capable of reproducing a range of complex features that are characteristic of the animal observations. These include complex input output functions that are nonlinear near the sites best frequency, but linear elsewhere. This nonlinearity is critical when using the output of the algorithm as the input to models of inner hair cell function and subsequent auditory-nerve models of low- and high-spontaneous rate fibers. We present an algorithm that uses two processing units operating in parallel: one linear and the other compressively nonlinear. The output from the algorithm is the sum of the outputs of the linear and nonlinear processing units. Input to the algorithm is stapes motion and output represents basilar membrane motion. The algorithm is evaluated against published chinchilla and guinea pig observations of basilar membrane and Reissners membrane motion made using laser velocimetry. The algorithm simulates both quantitatively and qualitatively, differences in input/output functions among three different sites along the cochlear partition. It also simulates quantitatively and qualitatively a range of phenomena including isovelocity functions, phase response, two-tone suppression, impulse response, and distortion products. The algorithm is potentially suitable for development as a bank of filters, for use in more comprehensive models of the peripheral auditory system.


Journal of the Acoustical Society of America | 2002

A revised model of the inner-hair cell and auditory-nerve complex

Christian J. Sumner; Enrique A. Lopez-Poveda; Lowel P. O’Mard; Ray Meddis

A revised computational model of the inner-hair cell (IHC) and auditory-nerve (AN) complex is presented and evaluated. Building on previous models, the algorithm is intended as a component for use in more comprehensive models of the auditory periphery. It combines smaller components that aim to be faithful to physiology in so far as is practicable and known. Transduction between cochlear mechanical motion and IHC receptor potential (RP) is simulated using a modification of an existing biophysical IHC model. Changes in RP control the opening of calcium ion channels near the synapse, and local calcium levels determine the probability of the release of neurotransmitter. AN adaptation results from transmitter depletion. The exact timing of AN action potentials is determined by the quantal and stochastic release of neurotransmitter into the cleft. The model reproduces a wide range of animal RP and AN observations. When the input to the model is taken from a suitably nonlinear simulation of the motion of the cochlear partition, the new algorithm is able to simulate the rate-intensity functions of low-, medium-, and high-spontaneous rate AN fibers in response to stimulation both at best frequency and at other frequencies. The variation in fiber type arises in large part from the manipulation of a single parameter in the model: maximum calcium conductance. The model also reproduces quantitatively phase-locking characteristics, relative refractory effects, mean-to-variance ratio, and first- and second-order discharge history effects.


Journal of the Acoustical Society of America | 2003

Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing

Enrique A. Lopez-Poveda; Christopher J. Plack; Ray Meddis

Cochlear nonlinearity was estimated over a wide range of center frequencies and levels in listeners with normal hearing, using a forward-masking method. For a fixed low-level probe, the masker level required to mask the probe was measured as a function of the masker-probe interval, to produce a temporal masking curve (TMC). TMCs were measured for probe frequencies of 500, 1000, 2000, 4000, and 8000 Hz, and for masker frequencies 0.5, 0.7, 0.9, 1.0 (on frequency), 1.1, and 1.6 times the probe frequency. Across the range of probe frequencies, the TMCs for on-frequency maskers showed two or three segments with clearly distinct slopes. If it is assumed that the rate of decay of the internal effect of the masker is constant across level and frequency, the variations in the slopes of the TMCs can be attributed to variations in cochlear compression. Compression-ratio estimates for on-frequency maskers were between 3:1 and 5:1 across the range of probe frequencies. Compression did not decrease at low frequencies. The slopes of the TMCs for the lowest frequency probe (500 Hz) did not change with masker frequency. This suggests that compression extends over a wide range of stimulus frequencies relative to characteristic frequency in the apical region of the cochlea.


Journal of the Acoustical Society of America | 2004

Inferred basilar-membrane response functions for listeners with mild to moderate sensorineural hearing loss

Christopher J. Plack; Vit Drga; Enrique A. Lopez-Poveda

Psychophysical estimates of cochlear function suggest that normal-hearing listeners exhibit a compressive basilar-membrane (BM) response. Listeners with moderate to severe sensorineural hearing loss may exhibit a linearized BM response along with reduced gain, suggesting the loss of an active cochlear mechanism. This study investigated how the BM response changes with increasing hearing loss by comparing psychophysical measures of BM compression and gain for normal-hearing listeners with those for listeners who have mild to moderate sensorineural hearing loss. Data were collected from 16 normal-hearing listeners and 12 ears from 9 hearing-impaired listeners. The forward masker level required to mask a fixed low-level, 4000-Hz signal was measured as a function of the masker-signal interval using a masker frequency of either 2200 or 4000 Hz. These plots are known as temporal masking curves (TMCs). BM response functions derived from the TMCs showed a systematic reduction in gain with degree of hearing loss. Contrary to current thinking, however, no clear relationship was found between maximum compression and absolute threshold.


Neuroscience | 2005

The inferior colliculus of the rat: Quantitative immunocytochemical study of GABA and glycine

Miguel A. Merchán; L.A. Aguilar; Enrique A. Lopez-Poveda; Manuel S. Malmierca

Both GABA and glycine (Gly) containing neurons send inhibitory projections to the inferior colliculus (IC), whereas inhibitory neurons within the IC are primarily GABAergic. To date, however, a quantitative description of the topographic distribution of GABAergic neurons in the rats IC and their GABAergic or glycinergic inputs is lacking. Accordingly, here we present detailed maps of GABAergic and glycinergic neurons and terminals in the rats IC. Semithin serial sections of the IC were obtained and stained for GABA and Gly. Images of the tissue were digitized and used for a quantitative densitometric analysis of GABA immunostaining. The optical density, perimeter, and number of GABA- and Gly immunoreactive boutons apposed to the somata were measured. Data analysis included comparisons across IC subdivisions and across frequency regions within the central nucleus of the IC. The results show that: 1) 25% of the IC neurons are GABAergic; 2) there are more GABAergic neurons in the central nucleus of the IC than previously estimated; 3) GABAergic neurons are larger than non-GABAergic; 4) GABAergic neurons receive less GABA and glycine puncta than non-GABAergic; 5) differences across frequency regions are minor, except that the non-GABAergic neurons from high frequency regions are larger than their counterparts in low frequency regions; 6) differences within the laminae are greater along the dorsomedial-ventrolateral axis than along the rostrocaudal axis; 7) GABA and non-GABAergic neurons receive different numbers of puncta in different IC subdivisions; and 8) GABAergic puncta are both apposed to the somata and in the neuropil, glycinergic puncta are mostly confined to the neuropil.


Ear and Hearing | 2005

Two new directions in speech processor design for cochlear implants.

Blake S. Wilson; Reinhold Schatzer; Enrique A. Lopez-Poveda; Xiaoan Sun; Dewey T. Lawson; Robert D. Wolford

Two new approaches to the design of speech processors for cochlear implants are described. The first aims to represent “fine structure” or “fine frequency” information in a way that it can be perceived and used by patients, and the second aims to provide a closer mimicking than was previously possible of the signal processing that occurs in the normal cochlea.


Experimental Brain Research | 2003

The commissure of the inferior colliculus shapes frequency response areas in rat: an in vivo study using reversible blockade with microinjection of kynurenic acid.

Manuel S. Malmierca; Olga Hernández; Atilio Falconi; Enrique A. Lopez-Poveda; Miguel A. Merchán; Adrian Rees

The commissure of the inferior colliculus (CoIC) interconnects corresponding frequency-band laminae in the two inferior colliculi (ICs). Although the CoIC has been studied neurophysiologically in vitro, the effect of the CoIC on the responses of IC neurons to physiological stimuli has not been addressed. In this study, we injected the glutamate receptor blocker kynurenic acid into one IC while recording the frequency response areas (FRAs) of neurons in the other, to test the hypothesis that frequency response properties of IC neurons are influenced by commissural inputs from the contralateral IC. Following blockade of the commissure, 10 of 12 neurons tested exhibited an increase or a decrease in their FRAs. In most neurons (9/12) the response area changed in the same direction, irrespective of whether the neuron was stimulated monaurally (at the ear contralateral to the recorded IC) or binaurally. In one neuron, blockade of the CoIC resulted in an expansion of the response area under binaural stimulation and a contraction under monaural stimulation. In the remaining two units, no effect was observed. Changes in response areas that exceeded the criterion ranged between 17 and 80% of control values with monaural stimulation, and 35 and 77% with binaural stimulation. Area changes could also be accompanied by changes in spike rate and monotonicity. From our observation that FRAs contract following commissure block, we infer that the commissure contains excitatory fibres. The expansion of response areas in other cases, however, suggests that the commissure also contains inhibitory fibres, or that its effects are mediated by disynaptic as well as monosynaptic circuits. The small sample size precludes a definitive conclusion as to which effect predominates. We conclude that inputs from the contralateral IC projecting via the CoIC influence the spectral selectivity and response gain of neurons in the IC.


Journal of the Acoustical Society of America | 2003

A nonlinear filter-bank model of the guinea-pig cochlear nerve: Rate responses

Christian J. Sumner; Lowel P. O’Mard; Enrique A. Lopez-Poveda; Ray Meddis

The aim of this study is to produce a functional model of the auditory nerve (AN) response of the guinea-pig that reproduces a wide range of important responses to auditory stimulation. The model is intended for use as an input to larger scale models of auditory processing in the brain-stem. A dual-resonance nonlinear filter architecture is used to reproduce the mechanical tuning of the cochlea. Transduction to the activity on the AN is accomplished with a recently proposed model of the inner-hair-cell. Together, these models have been shown to be able to reproduce the response of high-, medium-, and low-spontaneous rate fibers from the guinea-pig AN at high best frequencies (BFs). In this study we generate parameters that allow us to fit the AN model to data from a wide range of BFs. By varying the characteristics of the mechanical filtering as a function of the BF it was possible to reproduce the BF dependence of frequency-threshold tuning curves, AN rate-intensity functions at and away from BF, compression of the basilar membrane at BF as inferred from AN responses, and AN iso-intensity functions. The model is a convenient computational tool for the simulation of the range of nonlinear tuning and rate-responses found across the length of the guinea-pig cochlear nerve.


Journal of the Acoustical Society of America | 2008

A variant temporal-masking-curve method for inferring peripheral auditory compression

Enrique A. Lopez-Poveda; Ana Alves-Pinto

Recent studies have suggested that the degree of on-frequency peripheral auditory compression is similar for apical and basal cochlear sites and that compression extends to a wider range of frequencies in apical than in basal sites. These conclusions were drawn from the analysis of the slopes of temporal masking curves (TMCs) on the assumption that forward masking decays at the same rate for all probe and masker frequencies. The aim here was to verify this conclusion using a different assumption. TMCs for normal hearing listeners were measured for probe frequencies (f(P)) of 500 and 4000 Hz and for masker frequencies (f(M)) of 0.4, 0.55, and 1.0 times the probe frequency. TMCs were measured for probes of 9 and 15 dB sensation level. The assumption was that given a 6 dB increase in probe level, linear cochlear responses to the maskers should lead to a 6 dB vertical shift of the corresponding TMCs, while compressive responses should lead to bigger shifts. Results were consistent with the conclusions from earlier studies. It is argued that this supports the assumptions of the standard TMC method for inferring compression, at least in normal-hearing listeners.

Collaboration


Dive into the Enrique A. Lopez-Poveda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan R. Palmer

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Plack

Manchester Academic Health Science Centre

View shared research outputs
Top Co-Authors

Avatar

Patricia Pérez-González

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge