Almudena Hospido
University of Santiago de Compostela
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Almudena Hospido.
Water Research | 2013
Ll. Corominas; J. Foley; Jeremy S. Guest; Almudena Hospido; Henrik Fred Larsen; Serni Morera; A. Shaw
Life cycle assessment (LCA) is a technique to quantify the impacts associated with a product, service or process from cradle-to-grave perspective. Within the field of wastewater treatment (WWT) LCA was first applied in the 1990s. In the pursuit of more environmentally sustainable WWT, it is clear that LCA is a valuable tool to elucidate the broader environmental impacts of design and operation decisions. With growing interest from utilities, practitioners, and researchers in the use of LCA in WWT systems, it is important to make a review of what has been achieved and describe the challenges for the forthcoming years. This work presents a comprehensive review of 45 papers dealing with WWT and LCA. The analysis of the papers showed that within the constraints of the ISO standards, there is variability in the definition of the functional unit and the system boundaries, the selection of the impact assessment methodology and the procedure followed for interpreting the results. The need for stricter adherence to ISO methodological standards to ensure quality and transparency is made clear and emerging challenges for LCA applications in WWT are discussed, including: a paradigm shift from pollutant removal to resource recovery, the adaptation of LCA methodologies to new target compounds, the development of regional factors, the improvement of the data quality and the reduction of uncertainty. Finally, the need for better integration and communication with decision-makers is highlighted.
International Dairy Journal | 2003
Almudena Hospido; M.T. Moreira; Gumersindo Feijoo
Milk, an example of staple food, has an outstanding demand by consumers as it is considered a prescription for good health. Life cycle assessment (LCA) is an excellent tool of environmental management and it provides a widespread knowledge on the environmental burdens associated to a product or to a human activity. In this study, a simplified methodology of LCA has been applied to analyse a representative scheme of milk production in Galicia (Spain), where a reliable inventory is still lacking. High quality data for the inventory was obtained in different representative fodder factories, farms and dairies for time periods over two years. The analysis of these data by LCA has permitted to quantify the potential impact associated to milk production and also to determine the reductions attained by the application of different improvement actions, such as the most adequate formulation of cattle feed and the implementation of treatment systems for water and air emissions. The consideration of these actions can lead to a maximum reduction of almost 22% of the global normalised impact.
Water Research | 2011
G. Rodriguez-Garcia; M. Molinos-Senante; Almudena Hospido; F. Hernández-Sancho; M.T. Moreira; Gumersindo Feijoo
The objective of wastewater treatment plants (WWTPs) is to prevent pollution. However, it is necessary to assess their sustainability in order to ensure that pollution is being removed, not displaced. In this research, the performance of 24 WWTPs has been evaluated using a streamlined Life Cycle Assessment (LCA) with Eutrophication Potential (EP) and Global Warming Potential (GWP) as environmental indicators, and operational costs as economic indicators. WWTPs were further classified in six typologies by their quality requirements according to their final discharge point or water reuse. Moreover, two different functional units (FU), one based on volume (m(3)) and the other on eutrophication reduction (kg PO(4)(3-) removed) were used to further determine sustainability. A correlation between legal requirements and technologies used to achieve them was found: Organic matter removal plants were found to be less costly both in environmental and economic terms if volume was used as the functional unit, while more demanding typologies such as reuse plants showed a trade-off between lower EP and higher cost and GWP; however, this is overcome if the second FU is used instead, proving the sustainability of these options and that this FU better reflects the objectives of a WWTP.
Science of The Total Environment | 2011
Diego Iribarren; Almudena Hospido; María Teresa Moreira; Gumersindo Feijoo
Life Cycle Assessment (LCA) is often used for the environmental evaluation of agri-food systems due to its holistic perspective. In particular, the assessment of milk production at farm level requires the evaluation of multiple dairy farms to guarantee the representativeness of the study when a regional perspective is adopted. This article shows the joint implementation of LCA and Data Envelopment Analysis (DEA) in order to avoid the formulation of an average farm, therefore preventing standard deviations associated with the use of average inventory data while attaining the characterization and benchmarking of the operational and environmental performance of dairy farms. Within this framework, 72 farms located in Galicia (NW Spain) were subject to an LCA+DEA study which led to identify those farms with an efficient operation. Furthermore, target input consumption levels were benchmarked for each inefficient farm, and the corresponding target environmental impacts were calculated so that eco-efficiency criteria were verified. Thus, average reductions of up to 38% were found for input consumption levels, leading to impact reductions above 20% for every environmental impact category. Finally, the economic savings arising from efficient farming practices were also estimated. Economic savings of up to 0.13€ per liter of raw milk were calculated, which means extra profits of up to 40% of the final raw milk price.
Water Research | 2010
Almudena Hospido; Marta Carballa; Maite Moreira; F. Omil; J.M. Lema; Gumersindo Feijoo
Agricultural application of sewage sludge has been emotionally discussed in the last decades, because the latter contains organic micropollutants with unknown fate and risk potential. In this work, the reuse of anaerobically digested sludge in agriculture is evaluated from an environmental point of view by using Life Cycle Assessment methodology. More specifically, the potential impacts of emerging micropollutants, such as pharmaceuticals and personal care products, present in the sludge have been quantified. Four scenarios were considered according to the temperature of the anaerobic digestion (mesophilic or thermophilic) and the sludge retention time (20 or 10d), and they have been compared with the non-treated sludge. From an environmental point of view, the disposal of undigested sludge is not the most suitable alternative, except for global warming due to the dominance (65-85%) of the indirect emissions associated to the electricity use. Nutrient-related direct emissions dominate the eutrophication category impact in all the scenarios (>71.4%), although a beneficial impact related to the avoidance of industrial fertilisers production is also quantified (up to 6.7%). In terms of human and terrestrial toxicity, the direct emissions of heavy metals to soil dominate these two impact categories (>70%), and the contribution of other micropollutants is minimal. Moreover, only six (Galaxolide, Tonalide, Diazepam, Ibuprofen, Sulfamethoxazole and 17alpha-ethinyloestradiol) out of the 13 substances considered are really significant since they account for more than 95% of the overall micropollutants impact.
International Journal of Life Cycle Assessment | 2004
Almudena Hospido; Ma Teresa Moreira; Mercedes Fernández-Couto; Gumersindo Feijoo
Goal, Scope and BackgroundNowadays, every strategy must be developed taking into account the global impact on the environment; if this aspect is forgotten, a change of environmental loads or their effect will be caused and no reduction will be attained. For instance, a wastewater treatment plant (WWIP), which is considereda priori as an ecological treatment system, gives rise to an environmental impact due to its energy consumption, use of chemical compounds, emissions to the atmosphere and sludge production, the post-treatment of which will also have diverse environmental effects. The goal of this study is to evaluate the potential environmental impact corresponding to a municipal WW1P and to identify the hot spots associated with the process.MethodsIn this study, the Centre of Environmental Science (CML) of Leiden University methodology has been considered to quantify the potential environmental impact associated with the system under study. A comprehensive analysis of the WWTP was evaluated for the physico-chemical characterisation of the wastewaters as well as the inventory of all the inputs (energy, chemical compounds, ...) and outputs (emissions to air, water, soil and solid waste generation) associated with the global process. Regarding Life Cycle Inventory Assessment, SimaPro 5.0 was used and in particular CML factors (updated in 2002) were chosen for characterisation and normalisation stages.Results and DiscussionA comprehensive inventory of empirical data from water, sludge and gas flows during 2000 and 2001 was obtained. Two impact categories arise due to their significance: eutrophication and terrestrial ecotoxicity. Consequently, the aspects to be minimised in order to reduce the environmental impact of the system are the pollutant load at the watercourse discharge (mainly NH3, PO4[3- and COD, even when all of them are below legal limits) and the emissions to soil (mainly Cr, Hg and Zn, even when they are present in low concentrations) when the sludge is used for agricultural application.ConclusionsAs far as the environmental impact is concerned, differentiation between humid and dry season is not required as results are practically equal for both situations. Water discharge and sludge application to land have turned out to be the main contributors in the environmental performance of a WWTP. Regarding the former, the removal of nitrogen by means of a nitrification-denitrification system coupled to conventional biological aerobic treatment implies a high environmental impact reduction and, as for the latter, bearing in mind the proposed legislation, heavy metals as well as pathogens are supposed to be the key parameters to define the most adequate treatment strategies for the generated sludge.Recommendations and OutlookThis study can serve as a basis for future studies that can apply a similar policy to a great number of wastewater facilities. Besides, features such as different treatment systems and capacities can provide additional information with the final aim of including the environmental vector in the decision-making process when the operation of a WWTP is intended to be optimised. Moreover, sludge must also be a focus of attention due to the expected increase and its major contribution to the global environmental impact of a WWTP, which can determine other treatment alternatives.
Environmental Science & Technology | 2011
Marta Carballa; Cecilia Duran; Almudena Hospido
Many studies have shown the effectiveness of pretreatments prior to anaerobic digestion of solid wastes, but to our knowledge, none analyzes their environmental consequences/costs. In this work, seven different pretreatments applied to two types of waste (kitchen waste and sewage sludge) have been environmentally evaluated by using life cycle assessment (LCA) methodology. The results show that the environmental burdens associated to the application of pretreatments prior to anaerobic digestion cannot be excluded. Among the options tested, the pressurize-depressurize and chemical (acid or alkaline) pretreatments could be recommended on the basis of their beneficial net environmental performance, while thermal and ozonation alternatives require energy efficiency optimization to reduce their environmental burdens. Reconciling operational, economic and environmental aspects in a holistic approach for the selection of the most sustainable option, mechanical (e.g., pressurize-depressurize) and chemical methods appear to be the most appropriate alternatives at this stage.
Science of The Total Environment | 2010
Diego Iribarren; Ian Vázquez-Rowe; Almudena Hospido; María Teresa Moreira; Gumersindo Feijoo
The food production system as a whole is recognized as one of the major contributors to environmental impacts. Accordingly, food production, processing, transport and consumption account for a relevant portion of the greenhouse gas (GHG) emissions associated with any country. In this context, there is an increasing market demand for climate-relevant information regarding the global warming impact of consumer food products throughout the supply chains. This article deals with the assessment of the carbon footprint of seafood products as a key subgroup in the food sector. Galicia (NW Spain) was selected as a case study. The analysis is based on a representative set of species within the Galician fishing sector, including species obtained from coastal fishing (e.g. horse mackerel, Atlantic mackerel, European pilchard and blue whiting), offshore fishing (e.g. European hake, megrim and anglerfish), deep-sea fishing (skipjack and yellowfin tuna), extensive aquaculture (mussels) and intensive aquaculture (turbot). The carbon footprints associated with the production-related activities of each selected species were quantified following a business-to-business approach on the basis of 1year of fishing activity. These individual carbon footprints were used to calculate the carbon footprint for each of the different Galician fisheries and culture activities. Finally, the lump sum of the carbon footprints for coastal, offshore and deep-sea fishing and extensive and intensive aquaculture brought about the carbon footprint of the Galician fishing activity (i.e., capture and culture). A benchmark for quantifying and communicating emission reductions was then provided, and opportunities to reduce the GHG emissions associated with the Galician fishing activity could be prioritized.
Journal of Industrial Ecology | 2011
Sara González-García; Almudena Hospido; Roland Agnemo; Patrik Svensson; Eva Selling; Ma Teresa Moreira; Gumersindo Feijoo
The pulp industry plays an important role in the structure of the European economy and society. The production of pulp has been traditionally considered an important source of pollution due to the use of large amounts of chemicals, fuels, and water and its intensive energy consumption. Currently, this situation is changing due to the potential use of biomass to produce value‐added products, which minimizes environmental impacts and increases sustainability. This article uses life cycle assessment (LCA) to identify and quantify the environmental impacts associated with a Swedish softwood‐based biorefinery where total chlorine‐free (TCF) dissolving cellulose is produced together with ethanol and lignosulfonates. The system was defined according to a cradle‐to‐gate perspective - that is to say, from forest activities to the output of the biorefinery mill. According to the results, forest activities associated with the production of soft roundwood play a minor role in all the environmental impact categories under study. In contrast, the production of chemicals consumed in the cooking and bleaching stages, the sludge treatment generated in the wastewater treatment plant, and the on‐site energy production system were identified as the elements that negatively contribute the most to all impact categories. The production of steam from biorefinery wastes, biogas, and methanol in external boilers reduces the environmental impact in all categories. Specific actions associated with the reuse of wastes and improved gas treatment systems would improve the environmental profile of this production activity.
Journal of Industrial Ecology | 2011
Ian Vázquez-Rowe; Diego Iribarren; Almudena Hospido; Ma Teresa Moreira; Gumersindo Feijoo
Increasing the eco‐efficiency of fishing fleets is currently a major target issue in the seafood sector. This objective has been influenced in recent years by soaring fuel prices, a fact particularly relevant to a sector whose vessels present high energy consumption rates. Efforts to minimize fuel consumption in fishing fleets result in economic benefits and also in important reductions regarding environmental impacts. In this article, we combine life cycle assessment (LCA) and data envelopment analysis (DEA) to jointly discuss the operational and environmental performances of a set of multiple, similar entities. We applied the “five‐step LCA + DEA method” to a wide range of vessels for selected Galician fisheries, including deep‐sea, offshore, and coastal fleets. The environmental consequences of operational inefficiencies were quantified and target performance values benchmarked for inefficient vessels. We assessed the potential environmental performance of target vessels to verify eco‐efficiency criteria (lower input consumption levels, lower environmental impacts). Results revealed the strong dependence of environmental impacts on one major operational input: fuel consumption. The most intensive fuel‐consuming fleets, such as deep sea trawling, were found to entail the diesel consumption levels nearest to the efficiency values. Despite the reduced environmental contributions linked to other operational inputs, such as hull material, antifouling paint, or nets, these may contribute to substantial economic savings when minimized. Finally, given that Galicia is a major fishing region, many of the conclusions and perspectives obtained in this study may be extrapolated to other fishing fleets at the international level.