Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian Vázquez-Rowe is active.

Publication


Featured researches published by Ian Vázquez-Rowe.


Science of The Total Environment | 2010

Further potentials in the joint implementation of life cycle assessment and data envelopment analysis

Diego Iribarren; Ian Vázquez-Rowe; María Teresa Moreira; Gumersindo Feijoo

The combined application of Life Cycle Assessment and Data Envelopment Analysis has been recently proposed to provide a tool for the comprehensive assessment of the environmental and operational performance of multiple similar entities. Among the acknowledged advantages of LCA+DEA methodology, eco-efficiency verification and avoidance of average inventories are usually highlighted. However, given the novelty of LCA+DEA methods, a high number of additional potentials remain unexplored. In this sense, there are some features that are worth detailing given their wide interest to enhance LCA performance. Emphasis is laid on the improved interpretation of LCA results through the complementary use of DEA with respect to: (i) super-efficiency analysis to facilitate the selection of reference performers, (ii) inter- and intra-assessments of multiple data sets within any specific sector with benchmarking and trend analysis purposes, (iii) integration of an economic dimension in order to enrich sustainability assessments, and (iv) window analysis to evaluate environmental impact efficiency over a certain period of time. Furthermore, the capability of LCA+DEA methodology to be generally implemented in a wide range of scenarios is discussed. These further potentials are explained and demonstrated via the presentation of brief case studies based on real data sets.


Journal of Environmental Management | 2012

Environmental analysis of Ribeiro wine from a timeline perspective: harvest year matters when reporting environmental impacts.

Ian Vázquez-Rowe; Pedro Villanueva-Rey; Ma Teresa Moreira; Gumersindo Feijoo

A series of Galician (NW Spain) wines, such as Rías Baixas and Ribeiro have acquired international renown in the past few years. In this particular study, viticulture, vinification and bottling and packaging in a winery of the Ribeiro appellation were studied from a life cycle assessment perspective, with the main objective of identifying the largest environmental impacts for four different years of production (2007-2010). The selected functional unit was a 750 mL bottle of Ribeiro white wine, packaged for distribution. Inventory data was gathered mainly through direct communication using questionnaires. Results showed considerable annual variability in environmental performance, stressing the importance of including timeline analysis in the wine sector. Therefore, environmental scaling was proposed for the assessed wine based on the individual environmental impacts for each harvest year. Furthermore, the main hot spots identified were compost and pesticide production and emissions, in the agricultural phase and bottle production and electricity consumption, in the subsequent stages of wine production, in most of the selected impact categories. Suggested improvement opportunities included shifts in the compost transportation policy, recovery of natural resources for vineyard infrastructure, the introduction of new packaging formats in the bottling process and the use of pesticides with lower toxicity potential.


Science of The Total Environment | 2010

Estimation of the carbon footprint of the Galician fishing activity (NW Spain).

Diego Iribarren; Ian Vázquez-Rowe; Almudena Hospido; María Teresa Moreira; Gumersindo Feijoo

The food production system as a whole is recognized as one of the major contributors to environmental impacts. Accordingly, food production, processing, transport and consumption account for a relevant portion of the greenhouse gas (GHG) emissions associated with any country. In this context, there is an increasing market demand for climate-relevant information regarding the global warming impact of consumer food products throughout the supply chains. This article deals with the assessment of the carbon footprint of seafood products as a key subgroup in the food sector. Galicia (NW Spain) was selected as a case study. The analysis is based on a representative set of species within the Galician fishing sector, including species obtained from coastal fishing (e.g. horse mackerel, Atlantic mackerel, European pilchard and blue whiting), offshore fishing (e.g. European hake, megrim and anglerfish), deep-sea fishing (skipjack and yellowfin tuna), extensive aquaculture (mussels) and intensive aquaculture (turbot). The carbon footprints associated with the production-related activities of each selected species were quantified following a business-to-business approach on the basis of 1year of fishing activity. These individual carbon footprints were used to calculate the carbon footprint for each of the different Galician fisheries and culture activities. Finally, the lump sum of the carbon footprints for coastal, offshore and deep-sea fishing and extensive and intensive aquaculture brought about the carbon footprint of the Galician fishing activity (i.e., capture and culture). A benchmark for quantifying and communicating emission reductions was then provided, and opportunities to reduce the GHG emissions associated with the Galician fishing activity could be prioritized.


International Journal of Life Cycle Assessment | 2013

Application of three independent consequential LCA approaches to the agricultural sector in Luxembourg

Ian Vázquez-Rowe; Sameer Rege; Antonino Marvuglia; Julien Thénié; Alain Haurie; Enrico Benetto

PurposeConsequential Life Cycle Assessment (C-LCA) is a “system modelling approach in which activities in a product system are linked so that activities are included in the product system to the extent that they are expected to change as a consequence of a change in demand”. Hence, C-LCA focuses on micro-economic actions linked to macro-economic consequences, by identifying the (marginal) suppliers and technologies prone to be affected by variable scale changes in the demand of a product. Detecting the direct and indirect environmental effects due to changes in the production system is not an easy task. Hence, researchers have combined the consequential perspective with different econometric models. Therefore, the aim of this study is to assess an increase in biocrops cultivation in Luxembourg using three different consequential modelling approaches to understand the benefits, drawbacks and assumptions linked to each approach as applied to the case study selected.MethodsFirstly, a partial equilibrium (PE) model is used to detect changes in land cultivation based on the farmers’ revenue maximisation. Secondly, another PE model is proposed, which considers a different perspective aiming at minimising a total adaptation cost (so-called opportunity cost) to satisfy a given new demand of domestically produced biofuel. Finally, the consequential system delimitation for agricultural LCA approach, as proposed by Schmidt (Int J Life Cycle Assess 13:350–364, 2008), is applied.Results and discussionThe two PE models present complex shifts in crop rotation land use changes (LUCs), linked to the optimisation that is performed, while the remaining approach has limited consequential impact on changes in crop patterns since the expert opinion decision tree constitutes a simplification of the ongoing LUCs. However, environmental consequences in the latter were considerably higher due to intercontinental trade assumptions recommended by the experts that were not accounted for in the economic models. Environmental variations between the different scenarios due to LUCs vary based on the different expert- or computational-based assumptions. Finally, environmental consequences as compared with the current state-of-the-art are lame due to the limited impact of the shock within the global trade market.ConclusionsThe use of several consequential modelling approaches within the same study may help widen the interpretation of the advantages or risks of applying a specific change to a production system. In fact, different models may not only be good alternatives in terms of comparability of scenarios and assumptions, but there may also be room for complementing these within a unique framework to reduce uncertainties in an integrated way.


International Journal of Life Cycle Assessment | 2012

Inclusion of discard assessment indicators in fisheries life cycle assessment studies. Expanding the use of fishery-specific impact categories

Ian Vázquez-Rowe; Ma Teresa Moreira; Gumersindo Feijoo

PurposeThe main purpose of this article is to propose specific discard indexes for their development in fisheries life cycle assessment (LCA). The objective of these is to characterize and standardize discards in worldwide fisheries.MethodsThe global discard index (GDI) is intended to be an easily understood index whose use is extendible to any fishery in the world. It is presented as a dynamic index that aims to characterize and standardize discard rates between fisheries by direct comparison with the global discard rates reported periodically by FAO. Furthermore, a simplified approach excluding characterization is presented for scenarios in which the data quality linked to discards is poor. Two additional indicators, survival rate of discards and slipping, are proposed to improve the reporting and quantification of biomass waste by fishing vessels.ResultsGDI implementation, together with two other fishery-specific impact categories, showed remarkable differences in the environmental impacts of several fishing fleets when compared with the obtained results for conventional impact categories. Results for the conventional categories were strongly influenced by the energy use in the fishery, while results obtained for fishery-specific categories presented variable trends due to the dependence on a wider range of factors. GDI inclusion favored direct comparison with worldwide average discard rates on a time scale basis, from a wet weight or a net primary productivity perspective, depending on the selected approach.ConclusionsProposed indicators achieved the important objective of integrating discard data as a fishery-specific impact in fishery LCAs, increasing the benefits of implementing LCA in fisheries assessment. Specific advantages of these indicators include assessing changes in capture and landing composition, evaluating the selectivity of the fishing gears, and monitoring the behavior of fisheries in a normalized context respect to other fisheries. GDI was identified as an adequate methodological improvement for regular use in fisheries LCA. Future developments GDI include its harmonization for inclusion in damage assessment.


Journal of Industrial Ecology | 2011

Computation of Operational and Environmental Benchmarks Within Selected Galician Fishing Fleets

Ian Vázquez-Rowe; Diego Iribarren; Almudena Hospido; Ma Teresa Moreira; Gumersindo Feijoo

Increasing the eco‐efficiency of fishing fleets is currently a major target issue in the seafood sector. This objective has been influenced in recent years by soaring fuel prices, a fact particularly relevant to a sector whose vessels present high energy consumption rates. Efforts to minimize fuel consumption in fishing fleets result in economic benefits and also in important reductions regarding environmental impacts. In this article, we combine life cycle assessment (LCA) and data envelopment analysis (DEA) to jointly discuss the operational and environmental performances of a set of multiple, similar entities. We applied the “five‐step LCA + DEA method” to a wide range of vessels for selected Galician fisheries, including deep‐sea, offshore, and coastal fleets. The environmental consequences of operational inefficiencies were quantified and target performance values benchmarked for inefficient vessels. We assessed the potential environmental performance of target vessels to verify eco‐efficiency criteria (lower input consumption levels, lower environmental impacts). Results revealed the strong dependence of environmental impacts on one major operational input: fuel consumption. The most intensive fuel‐consuming fleets, such as deep sea trawling, were found to entail the diesel consumption levels nearest to the efficiency values. Despite the reduced environmental contributions linked to other operational inputs, such as hull material, antifouling paint, or nets, these may contribute to substantial economic savings when minimized. Finally, given that Galicia is a major fishing region, many of the conclusions and perspectives obtained in this study may be extrapolated to other fishing fleets at the international level.


Science of The Total Environment | 2014

Life cycle assessment of European pilchard (Sardina pilchardus) consumption. A case study for Galicia (NW Spain)

Ian Vázquez-Rowe; Pedro Villanueva-Rey; Almudena Hospido; María Teresa Moreira; Gumersindo Feijoo

European pilchard or sardines (Sardina pilchardus) are an attractive raw material to extract from Iberian waters, since they constitute a cheap source of protein and they are a popular product among consumers. This has led to a wide range of final products available for consumers to purchase based on this single raw material. Therefore, this study presents a cross-product environmental assessment using life cycle assessment of three different final products based on sardine landings: canned sardines, fresh sardines and European hake caught by using sardine as bait. In addition, the products were followed throughout their entire life cycle, considering different cooking methods for each final product. Results showed high variability in environmental impacts, not only between the three final products, but also when one single product was cooked in different ways, highlighting the importance that the consumption phase and other post-landing stages may have on the final environmental profile of seafood. Results are then analysed regarding relevant limitations and uncertainties, as well as in terms of the consumer and policy implications.


Science of The Total Environment | 2011

Updating the carbon footprint of the Galician fishing activity (NW Spain)

Diego Iribarren; Ian Vázquez-Rowe; Almudena Hospido; María Teresa Moreira; Gumersindo Feijoo

Recent life cycle assessment studies have revealed the relevance of cooling agent leakage when assessing the greenhouse gas (GHG) emissions generated by fishing vessel operations. The goal of this communication is to update the carbon footprinting of the Galician fishing activity (NW Spain) by including the GHG emissions from cooling agent leakage. Results proved the relevant role played by refrigerants regarding their contribution to the carbon footprint of fishing activities. Thus, an overall increase of 13% was found when comparing the final global carbon footprint for the Galician fishing activity with previous calculations that did not include these emissions. Nevertheless, further efforts should be made in order to provide robust data in this respect.


Waste Management | 2015

Environmental assessment of digestate treatment technologies using LCA methodology.

Ian Vázquez-Rowe; Katarzyna Golkowska; Viooltje Lebuf; Céline Vaneeckhaute; Evi Michels; Erik Meers; Enrico Benetto; Daniel Koster

The production of biogas from energy crops, organic waste and manure has augmented considerably the amounts of digestate available in Flanders. This has pushed authorities to steadily introduce legislative changes to promote its use as a fertilising agent. There is limited arable land in Flanders, which entails that digestate has to compete with animal manure to be spread. This forces many anaerobic digestion plants to further treat digestate in such a way that it can either be exported or the nitrogen be removed. Nevertheless, the environmental impact of these treatment options is still widely unknown, as well as the influence of these impacts on the sustainability of Flemish anaerobic digestion plants in comparison to other regions where spreading of raw digestate is allowed. Despite important economic aspects that must be considered, the use of Life Cycle Assessment (LCA) is suggested in this study to identify the environmental impacts of spreading digestate directly as compared to four different treatment technologies. Results suggest relevant environmental gains when the digestate mix is treated using the examined conversion technologies prior to spreading, although important trade-offs between impact categories were observed and discussed. The promising results of digestate conversion technologies suggest that further LCA analyses should be performed to delve into, for instance, the appropriateness to shift to nutrient recovery technologies rather than digestate conversion treatments.


Science of The Total Environment | 2016

Benchmarking wastewater treatment plants under an eco-efficiency perspective

Yago Lorenzo-Toja; Ian Vázquez-Rowe; Maria José Amores; Montserrat Termes-Rifé; Desirée Marín-Navarro; María Teresa Moreira; Gumersindo Feijoo

The new ISO 14045 framework is expected to slowly start shifting the definition of eco-efficiency toward a life-cycle perspective, using Life Cycle Assessment (LCA) as the environmental impact assessment method together with a system value assessment method for the economic analysis. In the present study, a set of 22 wastewater treatment plants (WWTPs) in Spain were analyzed on the basis of eco-efficiency criteria, using LCA and Life Cycle Costing (LCC) as a system value assessment method. The study is intended to be useful to decision-makers in the wastewater treatment sector, since the combined method provides an alternative scheme for analyzing the relationship between environmental impacts and costs. Two midpoint impact categories, global warming and eutrophication potential, as well as an endpoint single score indicator were used for the environmental assessment, while LCC was used for value assessment. Results demonstrated that substantial differences can be observed between different WWTPs depending on a wide range of factors such as plant configuration, plant size or even legal discharge limits. Based on these results the benchmarking of wastewater treatment facilities was performed by creating a specific classification and certification scheme. The proposed eco-label for the WWTPs rating is based on the integration of the three environmental indicators and an economic indicator calculated within the study under the eco-efficiency new framework.

Collaboration


Dive into the Ian Vázquez-Rowe's collaboration.

Top Co-Authors

Avatar

Gumersindo Feijoo

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

María Teresa Moreira

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Ma Teresa Moreira

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Pedro Villanueva-Rey

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Enrico Benetto

Institut national des sciences Appliquées de Lyon

View shared research outputs
Top Co-Authors

Avatar

Almudena Hospido

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yago Lorenzo-Toja

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Isabel Quispe

Pontifical Catholic University of Peru

View shared research outputs
Researchain Logo
Decentralizing Knowledge