Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alvaro Martinez Barrio is active.

Publication


Featured researches published by Alvaro Martinez Barrio.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Strong signatures of selection in the domestic pig genome

Carl-Johan Rubin; Hendrik-Jan Megens; Alvaro Martinez Barrio; Khurram Maqbool; Shumaila Sayyab; Doreen Schwochow; Chao Wang; Örjan Carlborg; Patric Jern; Claus B. Jørgensen; Alan Archibald; Merete Fredholm; M.A.M. Groenen; Leif Andersson

Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig—the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring

Sangeet Lamichhaney; Alvaro Martinez Barrio; Nima Rafati; Görel Sundström; Carl-Johan Rubin; Elizabeth R. Gilbert; Jonas Berglund; Anna Wetterbom; Linda Laikre; Matthew T. Webster; Manfred Grabherr; Nils Ryman; Leif Andersson

The Atlantic herring (Clupea harengus), one of the most abundant marine fishes in the world, has historically been a critical food source in Northern Europe. It is one of the few marine species that can reproduce throughout the brackish salinity gradient of the Baltic Sea. Previous studies based on few genetic markers have revealed a conspicuous lack of genetic differentiation between geographic regions, consistent with huge population sizes and minute genetic drift. Here, we present a cost-effective genome-wide study in a species that lacks a genome sequence. We first assembled a muscle transcriptome and then aligned genomic reads to the transcripts, creating an “exome assembly,” capturing both exons and flanking sequences. We then resequenced pools of fish from a wide geographic range, including the Northeast Atlantic, as well as different regions in the Baltic Sea, aligned the reads to the exome assembly, and identified 440,817 SNPs. The great majority of SNPs showed no appreciable differences in allele frequency among populations; however, several thousand SNPs showed striking differences, some approaching fixation for different alleles. The contrast between low genetic differentiation at most loci and striking differences at others implies that the latter category primarily reflects natural selection. A simulation study confirmed that the distribution of the fixation index FST deviated significantly from expectation for selectively neutral loci. This study provides insights concerning the population structure of an important marine fish and establishes the Atlantic herring as a model for population genetic studies of adaptation and natural selection.


Science | 2014

Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication

Miguel Carneiro; Carl Johan Rubin; Federica Di Palma; Frank W. Albert; Jessica Alföldi; Alvaro Martinez Barrio; Gerli Rosengren Pielberg; Nima Rafati; Shumaila Sayyab; Jason Turner-Maier; Shady Younis; Sandra Afonso; Bronwen Aken; Joel M. Alves; Daniel Barrell; G. Bolet; Samuel Boucher; Hernán A. Burbano; Rita Campos; Jean L. Chang; Véronique Duranthon; Luca Fontanesi; Hervé Garreau; David I. Heiman; Jeremy A. Johnson; Rose G. Mage; Ze Peng; Guillaume Queney; Claire Rogel-Gaillard; Magali Ruffier

Rabbits softly swept to domestication When people domesticate animals, they select for tameness and tolerance of humans. What else do they look for? To identify the selective pressures that led to rabbit domestication, Carneiro et al. sequenced a domestic rabbit genome and compared it to that of its wild brethren (see the Perspective by Lohmueller). Domestication did not involve a single gene changing, but rather many gene alleles changing in frequency between tame and domestic rabbits, known as a soft selective sweep. Many of these alleles have changes that may affect brain development, supporting the idea that tameness involves changes at multiple loci. Science, this issue p. 1074; see also p. 1000 The domestication of rabbits primarily shifted the frequencies of alleles represented, rather than creating new genes. [Also see Perspective by Lohmueller] The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci.


eLife | 2016

The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing

Alvaro Martinez Barrio; Sangeet Lamichhaney; Guangyi Fan; Nima Rafati; Mats Pettersson; He Zhang; Jacques Dainat; Diana Ekman; Marc P. Höppner; Patric Jern; Marcel Martin; Björn Nystedt; Xin Liu; Wenbin Chen; Xinming Liang; Chengcheng Shi; Yuanyuan Fu; Kailong Ma; Xiao Zhan; Chungang Feng; Ulla Gustafson; Carl-Johan Rubin; Markus Sällman Almén; Martina Blass; Michele Casini; Arild Folkvord; Linda Laikre; Nils Ryman; Simon Ming-Yuen Lee Lee; Xun Xu

Ecological adaptation is of major relevance to speciation and sustainable population management, but the underlying genetic factors are typically hard to study in natural populations due to genetic differentiation caused by natural selection being confounded with genetic drift in subdivided populations. Here, we use whole genome population sequencing of Atlantic and Baltic herring to reveal the underlying genetic architecture at an unprecedented detailed resolution for both adaptation to a new niche environment and timing of reproduction. We identify almost 500 independent loci associated with a recent niche expansion from marine (Atlantic Ocean) to brackish waters (Baltic Sea), and more than 100 independent loci showing genetic differentiation between spring- and autumn-spawning populations irrespective of geographic origin. Our results show that both coding and non-coding changes contribute to adaptation. Haplotype blocks, often spanning multiple genes and maintained by selection, are associated with genetic differentiation. DOI: http://dx.doi.org/10.7554/eLife.12081.001


PLOS ONE | 2011

The First Sequenced Carnivore Genome Shows Complex Host-Endogenous Retrovirus Relationships

Alvaro Martinez Barrio; Marie Ekerljung; Patric Jern; Farid Benachenhou; Göran Sperber; Erik Bongcam-Rudloff; Jonas Blomberg; Göran Andersson

Host-retrovirus interactions influence the genomic landscape and have contributed substantially to mammalian genome evolution. To gain further insights, we analyzed a female boxer (Canis familiaris) genome for complexity and integration pattern of canine endogenous retroviruses (CfERV). Intriguingly, the first such in-depth analysis of a carnivore species identified 407 CfERV proviruses that represent only 0.15% of the dog genome. In comparison, the same detection criteria identified about six times more HERV proviruses in the human genome that has been estimated to contain a total of 8% retroviral DNA including solitary LTRs. These observed differences in man and dog are likely due to different mechanisms to purge, restrict and protect their genomes against retroviruses. A novel group of gammaretrovirus-like CfERV with high similarity to HERV-Fc1 was found to have potential for active retrotransposition and possibly lateral transmissions between dog and human as a result of close interactions during at least 10.000 years. The CfERV integration landscape showed a non-uniform intra- and inter-chromosomal distribution. Like in other species, different densities of ERVs were observed. Some chromosomal regions were essentially devoid of CfERVs whereas other regions had large numbers of integrations in agreement with distinct selective pressures at different loci. Most CfERVs were integrated in antisense orientation within 100 kb from annotated protein-coding genes. This integration pattern provides evidence for selection against CfERVs in sense orientation relative to chromosomal genes. In conclusion, this ERV analysis of the first carnivorous species supports the notion that different mammals interact distinctively with endogenous retroviruses and suggests that retroviral lateral transmissions between dog and human may have occurred.


Nucleic Acids Research | 2007

EVALLER: a web server for in silico assessment of potential protein allergenicity

Alvaro Martinez Barrio; Daniel Soeria-Atmadja; Anders Nistér; Mats Gustafsson; Ulf Hammerling; Erik Bongcam-Rudloff

Bioinformatics testing approaches for protein allergenicity, involving amino acid sequence comparisons, have evolved appreciably over the last several years to increased sophistication and performance. EVALLER, the web server presented in this article is based on our recently published ‘Detection based on Filtered Length-adjusted Allergen Peptides’ (DFLAP) algorithm, which affords in silico determination of potential protein allergenicity of high sensitivity and excellent specificity. To strengthen bioinformatics risk assessment in allergology EVALLER provides a comprehensive outline of its judgment on a query proteins potential allergenicity. Each such textual output incorporates a scoring figure, a confidence numeral of the assignment and information on high- or low-scoring matches to identified allergen-related motifs, including their respective location in accordingly derived allergens. The interface, built on a modified Perl Open Source package, enables dynamic and color-coded graphic representation of key parts of the output. Moreover, pertinent details can be examined in great detail through zoomed views. The server can be accessed at http://bioinformatics.bmc.uu.se/evaller.html.


BMC Bioinformatics | 2009

Annotation and visualization of endogenous retroviral sequences using the Distributed Annotation System (DAS) and eBioX

Alvaro Martinez Barrio; Erik Lagercrantz; Göran Sperber; Jonas Blomberg; Erik Bongcam-Rudloff

BackgroundThe Distributed Annotation System (DAS) is a widely used network protocol for sharing biological information. The distributed aspects of the protocol enable the use of various reference and annotation servers for connecting biological sequence data to pertinent annotations in order to depict an integrated view of the data for the final user.ResultsAn annotation server has been devised to provide information about the endogenous retroviruses detected and annotated by a specialized in silico tool called RetroTector. We describe the procedure to implement the DAS 1.5 protocol commands necessary for constructing the DAS annotation server. We use our server to exemplify those steps. Data distribution is kept separated from visualization which is carried out by eBioX, an easy to use open source program incorporating multiple bioinformatics utilities. Some well characterized endogenous retroviruses are shown in two different DAS clients. A rapid analysis of areas free from retroviral insertions could be facilitated by our annotations.ConclusionThe DAS protocol has shown to be advantageous in the distribution of endogenous retrovirus data. The distributed nature of the protocol is also found to aid in combining annotation and visualization along a genome in order to enhance the understanding of ERV contribution to its evolution. Reference and annotation servers are conjointly used by eBioX to provide visualization of ERV annotations as well as other data sources. Our DAS data source can be found in the central public DAS service repository, http://www.dasregistry.org, or at http://loka.bmc.uu.se/das/sources.


Scientific Reports | 2015

Amelanism in the corn snake is associated with the insertion of an LTR-retrotransposon in the OCA2 gene.

Suzanne V. Saenko; Sangeet Lamichhaney; Alvaro Martinez Barrio; Nima Rafati; Leif Andersson; Michel C. Milinkovitch

The corn snake (Pantherophis guttatus) is a new model species particularly appropriate for investigating the processes generating colours in reptiles because numerous colour and pattern mutants have been isolated in the last five decades. Using our captive-bred colony of corn snakes, transcriptomic and genomic next-generation sequencing, exome assembly, and genotyping of SNPs in multiple families, we delimit the genomic interval bearing the causal mutation of amelanism, the oldest colour variant observed in that species. Proceeding with sequencing the candidate gene OCA2 in the uncovered genomic interval, we identify that the insertion of an LTR-retrotransposon in its 11th intron results in a considerable truncation of the p protein and likely constitutes the causal mutation of amelanism in corn snakes. As amelanistic snakes exhibit white, instead of black, borders around an otherwise normal pattern of dorsal orange saddles and lateral blotches, our results indicate that melanocytes lacking melanin are able to participate to the normal patterning of other colours in the skin. In combination with research in the zebrafish, this work opens the perspective of using corn snake colour and pattern variants to investigate the generative processes of skin colour patterning shared among major vertebrate lineages.


Retrovirology | 2009

In silico analysis of the dog genome identifies Canine Endogenous Retroviruses (CfERVs)

Alvaro Martinez Barrio; Marie Ekjerlund; Göran Sperber; Jonas Blomberg; Erik Bongcam-Rudloff; Göran Andersson

A whole dog genome analysis was perfomed using RetroTector© to identify and define the complexity of canine endogenous retroviruses (CfERV). Results show that all dog chromosomes contain CfERV integrations. Furthermore, the integration pattern was shown to be uneven with some regions essentially devoid of integrations and other regions having large amounts of CfERV integrations. The dog may well have been effective in protecting its genome from integrations of most types of endogenous retroviruses. Compared to mouse, chimpanzee and human, dog has substantially lower amounts of ERVs. We identified a total of 416 ERVs, which is only approximately a fifth of the amount of HERVs found in the human genome. Phylogenetic analysis showed that the vast majority of CfERVs cluster with the gammaretrovirus genus (n = 318). The second most common group was the beta-retroviruses (n = 27). This pattern is similar in other vertebrates. In addition, three spuma-like and four gypsy-like CfERVs were identified. The latter group is rare in vertebrate genomes. Moreover, we identified a group of 55 CfERVs with mixed phylogenetic relationship to any known retroviral genera. The integration pattern of CfERVs was analyzed in relation to genes in their vicinity and a substantial fraction of CfERV was found within annotated genes and within 100 kb from annotated dog genes. Interestingly, a group of recently integrated CfERVs with similarity to HERV-Fc1 was found. Several of them had all or nearly all major reading frames open, a sign of functionality. Therefore, some of these CfERVs may have potential for active retrotransposition and thus actively contribute to the plasticity of canine genomes. The differential distribution and amounts of ERVs in the dog genome compared to genomes in the primate and rodent clades suggest species-specific mechanisms of purging different classes of ERVs.


PLOS ONE | 2009

Targeted resequencing and analysis of the Diamond-Blackfan anemia disease locus RPS19.

Alvaro Martinez Barrio; Oskar Eriksson; Jitendra Badhai; Anne-Sophie Fröjmark; Erik Bongcam-Rudloff; Niklas Dahl; Jens Schuster

Collaboration


Dive into the Alvaro Martinez Barrio's collaboration.

Top Co-Authors

Avatar

Erik Bongcam-Rudloff

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Göran Andersson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Lagercrantz

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie Ekerljung

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge