Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda A. S. Gulbis is active.

Publication


Featured researches published by Amanda A. S. Gulbis.


The Astronomical Journal | 2005

The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population

James L. Elliot; Susan Diane Kern; K. B. Clancy; Amanda A. S. Gulbis; Robert L. Millis; Marc William Buie; Lawrence H. Wasserman; Eugene Chiang; A. B. Jordan; David E. Trilling; K. J. Meech

The Deep Ecliptic Survey (DES)?a search optimized for the discovery of Kuiper belt objects (KBOs) with the Blanco and Mayall 4 m telescopes at the Cerro Tololo Inter-American Observatory and Kitt Peak National Observatory?has covered 550 deg2 from its inception in 1998 through the end of 2003. This survey has a mean 50% sensitivity at VR magnitude 22.5. We report here the discoveries of 320 designated KBOs and Centaurs for the period 2000 March through 2003 December and describe improvements to our discovery and recovery procedures. Our data and the data products needed to reproduce our analyses in this paper are available through the NOAO survey database. Here we present a dynamical classification scheme, based on the behavior of orbital integrations over 10 Myr. The dynamical classes, in order of testing, are Resonant, Centaur, Scattered-Near, Scattered-Extended, and Classical. (These terms are capitalized when referring to our rigorous definitions.) Of the 382 total designated KBOs discovered by the DES, a subset of 196 objects have sufficiently accurate orbits for dynamical classification. Summary information is given for an additional 240 undesignated objects also discovered by the DES from its inception through the end of 2003. The number of classified DES objects (uncorrected for observational bias) are Classical, 96; Resonant, 54; Scattered-Near, 24; Scattered-Extended, 9; and Centaur, 13. We use subsets of the DES objects (which can have observational biases removed) and larger samples to perform dynamical analyses on the Kuiper belt. The first of these is a determination of the Kuiper belt plane (KBP), for which the Classical objects with inclinations less than 5? from the mean orbit pole yield a pole at R.A. = 27392 ? 062 and decl. = 6670 ? 020 (J2000), consistent with the invariable plane of the solar system. A general method for removing observational biases from the DES data set is presented and used to find a provisional magnitude distribution and the distribution of orbital inclinations relative to the KBP. A power-law model fit to the cumulative magnitude distribution of all KBOs discovered by the DES in the VR filter yields an index of 0.86 ? 0.10 (with the efficiency parameters for the DES fitted simultaneously with the population power law). With the DES sensitivity parameters fixed, we derive power-law indices of 0.74 ? 0.05, 0.52 ? 0.08, and 0.74 ? 0.15, respectively, for the Classical, Resonant, and Scattered classes. Plans for calibration of the DES detection efficiency function and DES magnitudes are discussed. The inclination distribution confirms the presence of hot and cold populations; when the geometric sin i factor is removed from the inclination distribution function, the cold population shows a concentrated core with a full width at half-maximum of approximately 46, while the hot population appears as a halo, extending beyond 30?. The inclination distribution is used to infer the KBO distribution in the sky, as a function of latitude relative to the KBP. This inferred latitude distribution is reasonably consistent with the latitude distribution derived from direct observation, but the agreement is not perfect. We find no clear boundary between the Classical and Scattered classes either in their orbital inclinations with respect to the KBP or in their power-law indices in their respective magnitude distributions. This leaves open the possibility that common processes have shaped the distribution of orbital parameters for the two classes.


Monthly Notices of the Royal Astronomical Society | 2011

Possible detection of two giant extrasolar planets orbiting the eclipsing polar UZ Fornacis

Stephen B. Potter; Encarni Romero-Colmenero; Gavin Ramsay; Steven M. Crawford; Amanda A. S. Gulbis; Sudhanshu Barway; Ewald Zietsman; Marissa Kotze; David A. H. Buckley; D. O’Donoghue; Oswald H. W. Siegmund; Jason McPhate; Barry Y. Welsh; John V. Vallerga

We present new high-speed, multi-observatory, multi-instrument photometry of the eclipsing polar UZ For in order to measure precise mid-eclipse times with the aim of detecting any orbital period variations. When combined with published eclipse times and archival data spanning ∼27 years, we detect departures from a linear and quadratic trend of ∼60 s. The departures are strongly suggestive of two cyclic variations of 16(3) and 5.25(25) years. The two favoured mechanisms to drive the periodicities are either two giant extrasolar planets as companions to the binary [with minimum masses of 6.3(1.5) and 7.7(1.2)MJup) or a magnetic cycle mechanism (e.g. Applegate’s mechanism) of the secondary star. Applegate’s mechanism would require the entire radiant energy output of the secondary and would therefore seem to be the least likely of the two, barring any further refinements in the effect of magnetic fields (e.g. those of Lanza et al.). The two-planet model can provide realistic solutions but it does not quite capture all of the eclipse times measurements. A highly eccentric orbit for the outer planet would fit the data nicely, but we find that such a solution would be unstable. It is also possible that the periodicities are driven by some combination of both mechanisms. Further observations of this system are encouraged.


The Astrophysical Journal | 2013

MULTI-WAVELENGTH OBSERVATIONS OF SUPERNOVA 2011ei: TIME-DEPENDENT CLASSIFICATION OF TYPE IIb AND Ib SUPERNOVAE AND IMPLICATIONS FOR THEIR PROGENITORS

Dan Milisavljevic; Raffaella Margutti; Alicia M. Soderberg; Giuliano Pignata; Laura Chomiuk; Robert A. Fesen; F. Bufano; Nathan Edward Sanders; Jerod T. Parrent; Stuart Parker; Paolo A. Mazzali; E. Pian; Timothy E. Pickering; David A. H. Buckley; Steven M. Crawford; Amanda A. S. Gulbis; Christian Hettlage; Eric J. Hooper; Kenneth H. Nordsieck; D. O'Donoghue; Tim Oliver Husser; Stephen B. Potter; Alexei Yu. Kniazev; Paul Kotze; Encarni Romero-Colmenero; Petri Vaisanen; M. Wolf; Michael F. Bietenholz; N. Bartel; Claes Fransson

We present X-ray, UV/optical, and radio observations of the stripped-envelope, core-collapse supernova (SN) 2011ei, one of the least luminous SNe IIb or Ib observed to date. Our observations begin with a discovery within � 1 day of explosion and span several months afterward. Early optical spectra exhibit broad, Type II-like hydrogen Balmer profiles that subside rapidly and are replaced by Type Ib-like He-rich features on the timescale of one week. High-cadence monitoring of this transition suggests that absorption attributable to a high velocity (& 12,000 km s −1 ) H-rich shell is not rare in Type Ib events. Radio observations imply a shock velocity of v � 0.13c and a progenitor star mass-loss rate of u M � 1.4 × 10 −5 M⊙ yr −1 (assuming wind velocity vw = 10 3 km s −1 ). This is consistent with independent constraints from deep X-ray observations with Swift-XRT and Chandra. Overall, the multi-wavelength properties of SN2011ei are consistent with the explosion of a lower-mass (3 4 M⊙), compact (R∗ . 1 × 10 11 cm), He core star. The star retained a thin hydrogen envelope at the time of explosion, and was embedded in an inhomogeneous circumstellar wind suggestive of modest episodic mass-loss. We conclude that SN2011ei’s rapid spectral metamorphosis is indicative of time-dependent classifications that bias estimates of explosion rates for Type IIb and Ib objects, and that important information about a progenitor star’s evolutionary state and mass-loss immediately prior to SN explosion can be inferred from timely multi-wavelength observations. Subject headings: supernovae: general — supernova: individual (SN2011ei)


Nature | 2006

Charon's radius and atmospheric constraints from observations of a stellar occultation

Amanda A. S. Gulbis; J. L. Elliot; Elisabeth R. Adams; B. A. Babcock; M. Emilio; Joseph W. Gangestad; Susan Diane Kern; E. A. Kramer; D. J. Osip; Jay M. Pasachoff; S. P. Souza; T. Tuvikene

The physical characteristics of Pluto and its moon, Charon, provide insight into the evolution of the outer Solar System. Although previous measurements have constrained the masses of these bodies, their radii and densities have remained uncertain. The observation of a stellar occultation by Charon in 1980 established a lower limit on its radius of 600 km (ref. 3) (later refined to 601.5 km; ref. 4) and suggested a possible atmosphere. Subsequent, mutual event modelling yielded a range of 600–650 km (ref. 5), corresponding to a density of 1.56 ± 0.22 g cm-3 (refs 2, 5). Here we report multiple-station observations of a stellar occultation by Charon. From these data, we find a mean radius of 606 ± 8 km, a bulk density of 1.72 ± 0.15 g cm-3, and rock-mass fraction 0.63 ± 0.05. We do not detect a significant atmosphere and place 3σ upper limits on atmospheric number densities for candidate gases. These results seem to be consistent with collisional formation for the Pluto–Charon system in which the precursor objects may have been differentiated, and they leave open the possibility of atmospheric retention by the largest objects in the outer Solar System.


Proceedings of SPIE | 2010

PySALT: the SALT science pipeline

Steven M. Crawford; Martin Still; P. Schellart; Luis Balona; David A. H. Buckley; Garith Dugmore; Amanda A. S. Gulbis; Alexei Yu. Kniazev; Marissa Kotze; N. Loaring; Kenneth H. Nordsieck; Timothy E. Pickering; Stephen B. Potter; Encarni Romero Colmenero; Petri Vaisanen; Theodore B. Williams; Ewald Zietsman

PySALT is the python/PyRAF-based data reduction and analysis pipeline for the Southern African Large Telescope (SALT), a modern 10m class telescope with a large user community consisting of 13 partner institutions. The two first generation instruments on SALT are SALTICAM, a wide-field imager, and the Robert Stobie Spectrograph (RSS). Along with traditional imaging and spectroscopy modes, these instruments provide a wide range of observing modes, including Fabry-Perot imaging, polarimetric observations, and high-speed observations. Due to the large user community, resources available, and unique observational modes of SALT, the development of reduction and analysis software is key to maximizing the scientific return of the telescope. PySALT is developed in the Python/PyRAF environment and takes advantage of a large library of open-source astronomical software. The goals in the development of PySALT are: (1) Provide science quality reductions for the major operational modes of SALT, (2) Create analysis tools for the unique modes of SALT, and (3) Create a framework for the archiving and distribution of SALT data. The data reduction software currently provides support for the reduction and analysis of regular imaging, high-speed imaging, and long slit spectroscopy with planned support for multi-object spectroscopy, high-speed spectroscopy, Fabry-Perot imaging, and polarimetric data sets. We will describe the development and current status of PySALT and highlight its benefits through early scientific results from SALT.


The Astronomical Journal | 2010

UNBIASED INCLINATION DISTRIBUTIONS FOR OBJECTS IN THE KUIPER BELT

Amanda A. S. Gulbis; James L. Elliot; Elisabeth R. Adams; Susan D. Benecchi; Marc William Buie; David E. Trilling; L. H. Wasserman

Using data from the Deep Ecliptic Survey (DES), we investigate the inclination distributions of objects in the Kuiper Belt. We present a derivation for observational bias removal and use this procedure to generate unbiased inclination distributions for Kuiper Belt objects (KBOs) of different DES dynamical classes, with respect to the Kuiper Belt plane. Consistent with previous results, we find that the inclination distribution for all DES KBOs is well fit by the sum of two Gaussians, or a Gaussian plus a generalized Lorentzian, multiplied by sin i. Approximately 80% of KBOs are in the high-inclination grouping. We find that Classical object inclinations are well fit by sin i multiplied by the sum of two Gaussians, with roughly even distribution between Gaussians of widths 2.0+0.6 –0.5° and 8.1+2.6 –2.1°. Objects in different resonances exhibit different inclination distributions. The inclinations of Scattered objects are best matched by sin i multiplied by a single Gaussian that is centered at 19.1+3.9 –3.6° with a width of 6.9+4.1 –2.7°. Centaur inclinations peak just below 20°, with one exceptionally high-inclination object near 80°. The currently observed inclination distribution of the Centaurs is not dissimilar to that of the Scattered Extended KBOs and Jupiter-family comets, but is significantly different from the Classical and Resonant KBOs. While the sample sizes of some dynamical classes are still small, these results should begin to serve as a critical diagnostic for models of solar system evolution.


The Astronomical Journal | 2008

WAVES IN PLUTO'S UPPER ATMOSPHERE

J. L. Elliot; Amanda A. S. Gulbis; Carlos Zuluaga; B. A. Babcock; Ailsa McKay; Jay M. Pasachoff; S. P. Souza; William B. Hubbard; Craig Kulesa; Diane McCarthy; Susan D. Benecchi; Stephen E. Levine; A. S. Bosh; Eileen V. Ryan; W. H. Ryan; Allan W. Meyer; Jürgen Wolf; John M. Hill

Observations of the 2007 March 18 occultation of the star P445.3 (2UCAC 25823784; R = 15.3) by Pluto were obtained at high time resolution at five sites across the western United States and reduced to produce light curves for each station using standard aperture photometry. Global models of Pluto’s upper atmosphere are fitted simultaneously to all resulting light curves. The results of these model fits indicate that the structure of Pluto’s upper atmosphere is essentially unchanged since the previous occultation observed in 2006, leading to a well-constrained measurement of the atmospheric half-light radius at 1291 ± 5 km. These results also confirm that the significant increase in atmospheric pressure detected between 1988 and 2002 has ceased. Inversion of the Multiple Mirror Telescope Observatory light curves with unprecedented signal-to-noise ratios reveals significant oscillations in the number density, pressure, and temperature profiles of Pluto’s atmosphere. Detailed analysis of this highest resolution light curve indicates that these variations in Pluto’s upper atmospheric structure exhibit a previously unseen oscillatory structure with strong correlations of features among locations separated by almost 1200 km in Pluto’s atmosphere. Thus, we conclude that these variations are caused by some form of large-scale atmospheric waves. Interpreting these oscillations as Rossby (planetary) waves allows us to establish an upper limit of less than 3ms −1 for horizontal wind speeds in the sampled region (radius 1340–1460 km) of Pluto’s upper atmosphere.


The Astronomical Journal | 2006

CHARON'S RADIUS AND DENSITY FROM THE COMBINED DATA SETS OF THE 2005 JULY 11 OCCULTATION

James L. Elliot; Amanda A. S. Gulbis; Jay M. Pasachoff; B. A. Babcock; S. P. Souza; J. Gangestad

The 2005 July 11 C313.2 stellar occultation by Charon was observed by three separate research groups, including our own, at observatories throughout South America. Here, the published timings from the three data sets have been combined to more accurately determine the mean radius of Charon: 606.0 ± 1.5 km. Our analysis indicates that a slight oblateness in the body (0.006 ± 0.003) best matches the data, with a confidence level of 86%. The oblateness has a pole position angle of 714 ± 104 and is consistent with Charons pole position angle of 67°. Charons mean radius corresponds to a bulk density of 1.63 ± 0.07 g cm-3, which is significantly less than Plutos (1.92 ± 0.12 g cm-3). This density differential favors an impact formation scenario for the system in which at least one of the impactors was differentiated. Finally, unexplained differences between chord timings measured at Cerro Pachon and the rest of the data set could be indicative of a depression as deep as 7 km on Charons limb.


The Astrophysical Journal | 2013

Characterization of the nearby L/T Binary Brown Dwarf WISE J104915.57–531906.1 at 2 Pc from the Sun

A. Y. Kniazev; Petri Vaisanen; K. Mužić; Andrea Mehner; Henri M. J. Boffin; R. Kurtev; C. Melo; V. D. Ivanov; J. H. Girard; Dimitri Mawet; Linda Schmidtobreick; N. Huélamo; J. Borissova; D. Minniti; K. Ishibashi; Stephen B. Potter; Y. Beletsky; D. Buckley; Steven M. Crawford; Amanda A. S. Gulbis; Paul Kotze; Brent Miszalski; Timothy E. Pickering; E. Romero Colmenero; T. B. Williams

WISE J104915.57–531906.1 is a L/T brown dwarf binary located 2 pc from the Sun. The pair contains the closest known brown dwarfs and is the third closest known system, stellar or sub-stellar. We report comprehensive follow-up observations of this newly uncovered system. We have determined the spectral types of both components (L8 ± 1, for the primary, agreeing with the discovery paper; T1.5 ± 2 for the secondary, which was lacking spectroscopic type determination in the discovery paper) and, for the first time, their radial velocities (V_(rad) ~ 23.1, 19.5 km s^(–1)) using optical spectra obtained at the Southern African Large Telescope and other facilities located at the South African Astronomical Observatory (SAAO). The relative radial velocity of the two components is smaller than the range of orbital velocities for theoretically predicted masses, implying that they form a gravitationally bound system. We report resolved near-infrared JHK_S photometry from the Infrared Survey Facility telescope at the SAAO which yields colors consistent with the spectroscopically derived spectral types. The available kinematic and photometric information excludes the possibility that the object belongs to any of the known nearby young moving groups or associations. Simultaneous optical polarimetry observations taken at the SAAO 1.9 m give a non-detection with an upper limit of 0.07%. For the given spectral types and absolute magnitudes, 1 Gyr theoretical models predict masses of 0.04-0.05 M _☉ for the primary, and 0.03-0.05 M _☉ for the secondary.


The Astronomical Journal | 2013

The 2011 June 23 stellar occultation by Pluto: Airborne and ground observations

Edward W. Dunham; Amanda Bosh; Stephen E. Levine; Amanda A. S. Gulbis; Amanda Zangari; Carlos Zuluaga; Jay M. Pasachoff; B. A. Babcock; S. Pandey; D. Amrhein; S. Sallum; D. J. Tholen; P. Collins; T. Bida; B. Taylor; Leonard P. Bright; Jürgen Wolf; A. W. Meyer; E. Pfueller; M. Wiedemann; H.-P. Roeser; R. Lucas; M. Kakkala; J. Ciotti; S. Plunkett; N. Hiraoka; William M. J. Best; E. J. Pilger; Marco Micheli; A. Springmann

On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Plutos atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 ± 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Plutos evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist at this full level through New Horizons flyby in 2015.

Collaboration


Dive into the Amanda A. S. Gulbis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Diane Kern

Association of Universities for Research in Astronomy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc William Buie

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Carlos Zuluaga

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael James Person

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge