Elisabeth R. Adams
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisabeth R. Adams.
The Astrophysical Journal | 2012
Jack J. Lissauer; Geoffrey W. Marcy; Jason F. Rowe; Stephen T. Bryson; Elisabeth R. Adams; Lars A. Buchhave; David R. Ciardi; William D. Cochran; Daniel C. Fabrycky; Eric B. Ford; Francois Fressin; John C. Geary; Ronald L. Gilliland; Matthew J. Holman; Steve B. Howell; Jon M. Jenkins; Karen Kinemuchi; David G. Koch; Robert C. Morehead; Darin Ragozzine; Shawn E. Seader; Peter G. Tanenbaum; Guillermo Torres; Joseph D. Twicken
We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.
The Astrophysical Journal | 2005
M. Błazejowski; G. Blaylock; I. H. Bond; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; O. Celik; P. Cogan; W. Cui; M. K. Daniel; C. Duke; Abe D. Falcone; D. J. Fegan; S. J. Fegan; J. P. Finley; L. Fortson; S. Gammell; K. Gibbs; G. G. Gillanders; J. Grube; K. Gutierrez; J. Hall; D. Hanna; J. Holder; D. Horan; B. Humensky; G. E. Kenny; M. Kertzman; D. Kieda; J. Kildea
We report results from an intensive multiwavelength monitoring campaign on the TeV blazar Mrk 421 over the period of 2003-2004. The source was observed simultaneously at TeV energies with the Whipple 10 m telescope and at X-ray energies with the Rossi X-Ray Timing Explorer (RXTE) during each clear night within the Whipple observing windows. Supporting observations were also frequently carried out at optical and radio wavelengths to provide simultaneous or contemporaneous coverages. The large amount of simultaneous data has allowed us to examine the variability of Mrk 421 in detail, including cross-band correlation and broadband spectral variability, over a wide range of flux. The variabilities are generally correlated between the X-ray and gamma-ray bands, although the correlation appears to be fairly loose. The light curves show the presence of flares with varying amplitudes on a wide range of timescales at both X-ray and TeV energies. Of particular interest is the presence of TeV flares that have no coincident counterparts at longer wavelengths, because the phenomenon seems difficult to understand in the context of the proposed emission models for TeV blazars. We have also found that the TeV flux reached its peak days before the X-ray flux did during a giant flare (or outburst) in 2004 (with the peak flux reaching ~135 mcrab in X-rays, as seen by the RXTE ASM, and ~3 crab in gamma rays). Such a difference in the development of the flare presents a further challenge to both the leptonic and hadronic emission models. Mrk 421 varied much less at optical and radio wavelengths. Surprisingly, the normalized variability amplitude in the optical seems to be comparable to that in the radio, perhaps suggesting the presence of different populations of emitting electrons in the jet. The spectral energy distribution of Mrk 421 is seen to vary with flux, with the two characteristic peaks moving toward higher energies at higher fluxes. We have failed to fit the measured spectral energy distributions (SEDs) with a one-zone synchrotron self-Compton model; introducing additional zones greatly improves the fits. We have derived constraints on the physical properties of the X-ray/gamma-ray flaring regions from the observed variability (and SED) of the source. The implications of the results are discussed.
The Astrophysical Journal | 2013
Lauren M. Weiss; Geoffrey W. Marcy; Jason F. Rowe; Andrew W. Howard; Howard Isaacson; Jonathan J. Fortney; Neil Miller; Brice-Olivier Demory; Debra A. Fischer; Elisabeth R. Adams; Andrea K. Dupree; Steve B. Howell; Rea Kolbl; John Asher Johnson; Elliott P. Horch; Mark E. Everett; Daniel C. Fabrycky; Sara Seager
We measure the mass of a modestly irradiated giant planet, KOI-94d. We wish to determine whether this planet, which is in a 22 day orbit and receives 2700 times as much incident flux as Jupiter, is as dense as Jupiter or rarefied like inflated hot Jupiters. KOI-94 also hosts at least three smaller transiting planets, all of which were detected by the Kepler mission. With 26 radial velocities of KOI-94 from the W. M. Keck Observatory and a simultaneous fit to the Kepler light curve, we measure the mass of the giant planet and determine that it is not inflated. Support for the planetary interpretation of the other three candidates comes from gravitational interactions through transit timing variations, the statistical robustness of multi-planet systems against false positives, and several lines of evidence that no other star resides within the photometric aperture. We report the properties of KOI-94b (M_P = 10.5 ± 4.6 M_⊕, R_P = 1.71 ± 0.16 R_⊕, P = 3.74 days), KOI-94c (M_P = 15.6^(+5.7)_(-15.6) M_⊕, R_P = 4.32 ± 0.41 R_⊕, P = 10.4 days), KOI-94d (M_P = 106 ± 11 M_⊕, R_P = 11.27 ± 1.06 R_⊕, P = 22.3 days), and KOI-94e (M_P = 35^(+18)_(-28) M_⊕, R_P = 6.56 ± 0.62 R_⊕, P = 54.3 days). The radial velocity analyses of KOI-94b and KOI-94e offer marginal (>2σ) mass detections, whereas the observations of KOI-94c offer only an upper limit to its mass. Using the KOI-94 system and other planets with published values for both mass and radius (138 exoplanets total, including 35 with M_P 150 M_⊕. These equations can be used to predict the radius or mass of a planet.
Nature | 2013
Jason F. Rowe; Jack J. Lissauer; Daniel Huber; Francois Fressin; Steve B. Howell; Stephen T. Bryson; W. J. Chaplin; J.-M. Desert; Eric D. Lopez; Geoffrey W. Marcy; Fergal Mullally; Darin Ragozzine; Guillermo Torres; Elisabeth R. Adams; Eric Agol; D. Barrado; Sarbani Basu; Timothy R. Bedding; Lars A. Buchhave; David Charbonneau; Jessie L. Christiansen; Jørgen Christensen-Dalsgaard; David R. Ciardi; William D. Cochran; Andrea K. Dupree; Y. Elsworth; Mark E. Everett; Debra A. Fischer; Eric B. Ford; Jonathan J. Fortney
Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.
The Astrophysical Journal | 2008
Elisabeth R. Adams; Sara Seager; Linda T. Elkins-Tanton
The bulk composition of an exoplanet is commonly inferred from its average density. For small planets, however, the average density is not unique within the range of compositions. Variations of a number of important planetary parameters—whicharedifficultorimpossibletoconstrainfrommeasurementsalone—produceplanetswiththesame averagedensitiesbutwidelyvaryingbulkcompositions.Wefindthataddingagasenvelopeequivalentto0.1%Y10% of the mass of a solid planet causes the radius to increase 5%Y60% above its gas-free value. A planet with a given mass and radius might have substantial water ice content (a so-called ocean planet), or alternatively alarge rocky iron coreandsomeHand/orHe.Forexample,awidevarietyof compositionscanexplaintheobservedradiusof GJ436b, althoughallmodelsrequiresomeH/He.Weconcludethattheidentificationof waterworldsbasedonthemass-radius relationship alone is impossible unless a significant gas layer can be ruled out by other means. Subject headingg planets and satellites: general — planetary systems — stars: individual (GJ 436) Online material: color figures
Monthly Notices of the Royal Astronomical Society | 2013
Jason H. Steffen; Daniel C. Fabrycky; Eric Agol; Eric B. Ford; Robert C. Morehead; William D. Cochran; Jack J. Lissauer; Elisabeth R. Adams; William J. Borucki; Steve Bryson; Douglas A. Caldwell; Andrea K. Dupree; Jon M. Jenkins; Paul Robertson; Jason F. Rowe; Shawn E. Seader; Susan E. Thompson; Joseph D. Twicken
We conrm 27 planets in 13 planetary systems by showing the existence of statistically signicant
The Astrophysical Journal | 2012
Steve B. Howell; Jason F. Rowe; Stephen T. Bryson; Samuel N. Quinn; Geoffrey W. Marcy; Howard Isaacson; David R. Ciardi; W. J. Chaplin; T. S. Metcalfe; M. J. P. F. G. Monteiro; T. Appourchaux; Sarbani Basu; O. L. Creevey; Ronald L. Gilliland; P.-O. Quirion; Denis Stello; Hans Kjeldsen; Jørgen Christensen-Dalsgaard; Y. Elsworth; R. A. García; G. Houdek; C. Karoff; J. Molenda-Żakowicz; M. J. Thompson; G. A. Verner; Guillermo Torres; Francois Fressin; Justin R. Crepp; Elisabeth R. Adams; Andrea K. Dupree
We present Kepler observations of the bright (V = 8.3), oscillating star HD 179070. The observations show transit-like events which reveal that the star is orbited every 2.8 days by a small, 1.6 R Earth object. Seismic studies of HD 179070 using short cadence Kepler observations show that HD 179070 has a frequency-power spectrum consistent with solar-like oscillations that are acoustic p-modes. Asteroseismic analysis provides robust values for the mass and radius of HD 179070, 1.34 ± 0.06 M ☉ and 1.86 ± 0.04 R ☉, respectively, as well as yielding an age of 2.84 ± 0.34 Gyr for this F5 subgiant. Together with ground-based follow-up observations, analysis of the Kepler light curves and image data, and blend scenario models, we conservatively show at the >99.7% confidence level (3σ) that the transit event is caused by a 1.64 ± 0.04 R Earth exoplanet in a 2.785755 ± 0.000032 day orbit. The exoplanet is only 0.04 AU away from the star and our spectroscopic observations provide an upper limit to its mass of ~10 M Earth (2σ). HD 179070 is the brightest exoplanet host star yet discovered by Kepler.
The Astrophysical Journal | 2009
Joshua N. Winn; Andrew W. Howard; John Asher Johnson; Geoffrey W. Marcy; J. Zachary Gazak; D. Starkey; Eric B. Ford; Knicole D. Colón; Francisco Reyes; L. Nortmann; S. Dreizler; Stephen C. Odewahn; William F. Welsh; Shimonee Kadakia; Robert J. Vanderbei; Elisabeth R. Adams; Matthew Lockhart; Ian J. M. Crossfield; Jeff A. Valenti; Ronald F. Dantowitz; Joshua A. Carter
We present the results of a transcontinental campaign to observe the 2009 June 5 transit of the exoplanet HD 80606b. We report the first detection of the transit ingress, revealing the transit duration to be 11.64 ± 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibit an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. The Keck data show that the projected spin-orbit angle λ is between 32° and 87° with 68.3% confidence and between 14° and 142° with 99.73% confidence. Thus, the orbit of this planet is not only highly eccentric (e = 0.93) but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planets eccentric orbit was caused by the Kozai mechanism. Independently of the theory, it is worth noting that all three exoplanetary systems with known spin-orbit misalignments have massive planets on eccentric orbits, suggesting that those systems migrate through a different channel than lower mass planets on circular orbits.
Nature | 2010
James L. Elliot; Carlos Zuluaga; Amanda Bosh; Elisabeth R. Adams; A. A. S. Gulbis; Stephen E. Levine; Melissa Fitch Lockhart; A. M. Zangari; B. A. Babcock; K. M. DuPre; Jay M. Pasachoff; S. P. Souza; W. Rosing; N. Secrest; Leonard P. Bright; Edward Wood Dunham; Scott S. Sheppard; M. Kakkala; T. Tilleman; B. Berger; J. W. Briggs; G. Jacobson; P. Valleli; B. Volz; S. Rapoport; Rhodes Hart; M. Brucker; R. Michel; A. Mattingly; L. Zambrano-Marin
The Kuiper belt is a collection of small bodies (Kuiper belt objects, KBOs) that lie beyond the orbit of Neptune and which are believed to have formed contemporaneously with the planets. Their small size and great distance make them difficult to study. KBO 55636 (2002 TX300) is a member of the water-ice-rich Haumea KBO collisional family. The Haumea family are among the most highly reflective objects in the Solar System. Dynamical calculations indicate that the collision that created KBO 55636 occurred at least 1 Gyr ago. Here we report observations of a multi-chord stellar occultation by KBO 55636, which occurred on 9 October 2009 ut. We find that it has a mean radius of 143 ± 5 km (assuming a circular solution). Allowing for possible elliptical shapes, we find a geometric albedo of in the V photometric band, which establishes that KBO 55636 is smaller than previously thought and that, like its parent body, it is highly reflective. The dynamical age implies either that KBO 55636 has an active resurfacing mechanism, or that fresh water-ice in the outer Solar System can persist for gigayear timescales.
Nature | 2006
Amanda A. S. Gulbis; J. L. Elliot; Elisabeth R. Adams; B. A. Babcock; M. Emilio; Joseph W. Gangestad; Susan Diane Kern; E. A. Kramer; D. J. Osip; Jay M. Pasachoff; S. P. Souza; T. Tuvikene
The physical characteristics of Pluto and its moon, Charon, provide insight into the evolution of the outer Solar System. Although previous measurements have constrained the masses of these bodies, their radii and densities have remained uncertain. The observation of a stellar occultation by Charon in 1980 established a lower limit on its radius of 600 km (ref. 3) (later refined to 601.5 km; ref. 4) and suggested a possible atmosphere. Subsequent, mutual event modelling yielded a range of 600–650 km (ref. 5), corresponding to a density of 1.56 ± 0.22 g cm-3 (refs 2, 5). Here we report multiple-station observations of a stellar occultation by Charon. From these data, we find a mean radius of 606 ± 8 km, a bulk density of 1.72 ± 0.15 g cm-3, and rock-mass fraction 0.63 ± 0.05. We do not detect a significant atmosphere and place 3σ upper limits on atmospheric number densities for candidate gases. These results seem to be consistent with collisional formation for the Pluto–Charon system in which the precursor objects may have been differentiated, and they leave open the possibility of atmospheric retention by the largest objects in the outer Solar System.