Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amelia Lane is active.

Publication


Featured researches published by Amelia Lane.


Cell Stem Cell | 2016

Identification and Correction of Mechanisms Underlying Inherited Blindness in Human iPSC-Derived Optic Cups

David A. Parfitt; Amelia Lane; Conor Ramsden; Amanda Jayne F Carr; Peter M.G. Munro; Katarina Jovanovic; Nele Schwarz; Naheed Kanuga; Manickam N. Muthiah; Sarah Hull; Jean-Marc Gallo; Lyndon da Cruz; Anthony T. Moore; Alison J. Hardcastle; Peter J. Coffey; Michael E. Cheetham

Summary Leber congenital amaurosis (LCA) is an inherited retinal dystrophy that causes childhood blindness. Photoreceptors are especially sensitive to an intronic mutation in the cilia-related gene CEP290, which causes missplicing and premature termination, but the basis of this sensitivity is unclear. Here, we generated differentiated photoreceptors in three-dimensional optic cups and retinal pigment epithelium (RPE) from iPSCs with this common CEP290 mutation to investigate disease mechanisms and evaluate candidate therapies. iPSCs differentiated normally into RPE and optic cups, despite abnormal CEP290 splicing and cilia defects. The highest levels of aberrant splicing and cilia defects were observed in optic cups, explaining the retinal-specific manifestation of this CEP290 mutation. Treating optic cups with an antisense morpholino effectively blocked aberrant splicing and restored expression of full-length CEP290, restoring normal cilia-based protein trafficking. These results provide a mechanistic understanding of the retina-specific phenotypes in CEP290 LCA patients and potential strategies for therapeutic intervention.


Human Molecular Genetics | 2015

Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells

Nele Schwarz; Amanda-Jayne F. Carr; Amelia Lane; Fabian Moeller; Li Li Chen; Mònica Aguilà; Britta Nommiste; Manickam N. Muthiah; Naheed Kanuga; Uwe Wolfrum; Kerstin Nagel-Wolfrum; Lyndon da Cruz; Peter J. Coffey; Michael E. Cheetham; Alison J. Hardcastle

Mutations in the RP2 gene lead to a severe form of X-linked retinitis pigmentosa. RP2 patients frequently present with nonsense mutations and no treatments are currently available to restore RP2 function. In this study, we reprogrammed fibroblasts from an RP2 patient carrying the nonsense mutation c.519C>T (p.R120X) into induced pluripotent stem cells (iPSC), and differentiated these cells into retinal pigment epithelial cells (RPE) to study the mechanisms of disease and test potential therapies. RP2 protein was undetectable in the RP2 R120X patient cells, suggesting a disease mechanism caused by complete lack of RP2 protein. The RP2 patient fibroblasts and iPSC-derived RPE cells showed phenotypic defects in IFT20 localization, Golgi cohesion and Gβ1 trafficking. These phenotypes were corrected by over-expressing GFP-tagged RP2. Using the translational read-through inducing drugs (TRIDs) G418 and PTC124 (Ataluren), we were able to restore up to 20% of endogenous, full-length RP2 protein in R120X cells. This level of restored RP2 was sufficient to reverse the cellular phenotypic defects observed in both the R120X patient fibroblasts and iPSC-RPE cells. This is the first proof-of-concept study to demonstrate successful read-through and restoration of RP2 function for the R120X nonsense mutation. The ability of the restored RP2 protein level to reverse the observed cellular phenotypes in cells lacking RP2 indicates that translational read-through could be clinically beneficial for patients.


American Journal of Human Genetics | 2016

Mutations in REEP6 Cause Autosomal-Recessive Retinitis Pigmentosa

Gavin Arno; Smriti Agrawal; Aiden Eblimit; James Bellingham; Mingchu Xu; F Wang; Christina Chakarova; David A. Parfitt; Amelia Lane; Thomas Burgoyne; Sarah Hull; Keren Carss; Alessia Fiorentino; Mj Hayes; Peter M.G. Munro; R Nicols; Nikolas Pontikos; Graham E. Holder; Ukirdc; C Asomugha; Fl Raymond; Anthony T. Moore; Plagnol; Michel Michaelides; Alison J. Hardcastle; Yixin Li; C Cukras; Andrew R. Webster; Michael E. Cheetham; Rui Chen

Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families. REEP6 is a member of the REEP/Yop1 family of proteins that influence the structure of the endoplasmic reticulum but is relatively unstudied. The six variants identified include three frameshift variants, two missense variants, and a genomic rearrangement that disrupts exon 1. Human 3D organoid optic cups were used to investigate REEP6 expression and confirmed the expression of a retina-specific isoform REEP6.1, which is specifically affected by one of the frameshift mutations. Expression of the two missense variants (c.383C>T [p.Pro128Leu] and c.404T>C [p.Leu135Pro]) and the REEP6.1 frameshift mutant in cultured cells suggest that these changes destabilize the protein. Furthermore, CRISPR-Cas9-mediated gene editing was used to produce Reep6 knock-in mice with the p.Leu135Pro RP-associated variant identified in one RP-affected individual. The homozygous knock-in mice mimic the clinical phenotypes of RP, including progressive photoreceptor degeneration and dysfunction of the rod photoreceptors. Therefore, our study implicates REEP6 in retinal homeostasis and highlights a pathway previously uncharacterized in retinal dystrophy.


Stem Cells Translational Medicine | 2014

Engineering Efficient Retinal Pigment Epithelium Differentiation From Human Pluripotent Stem Cells

Amelia Lane; Lissa Rachel Philip; Ludmila Ruban; Kate Fynes; Matthew J. K. Smart; Amanda Carr; Chris Mason; Peter J. Coffey

Human embryonic stem cells (hESCs) are a promising source of retinal pigment epithelium (RPE) cells: cells that can be used for the treatment of common and incurable forms of blindness, such as age‐related macular degeneration. Although most hESC lines will produce a number of clusters of pigmented RPE cells within 30–50 days when allowed to spontaneously differentiate, the timing and efficiency of differentiation is highly variable. This could prove problematic in the design of robust processes for the large scale production of RPE cells for cell therapy. In this study we sought to identify, quantify, and reduce the sources of variability in hESC‐RPE differentiation. By monitoring the emergence of pigmented cells over time, we show how the cell line, passaging method, passage number, and seeding density have a significant and reproducible effect on the RPE yield. To counter this variability, we describe the production of RPE cells from two cell lines in feeder‐free, density controlled conditions using single cell dissociation and seeding that is more amenable to scaled up production. The efficacy of small molecules in directing differentiation toward the RPE lineage was tested in two hESC lines with divergent RPE differentiation capacities. Neural induction by treatment with a bone morphogenetic protein inhibitor, dorsomorphin, significantly enhanced the RPE yield in one cell line but significantly reduce it in another, generating instead a Chx10 positive neural progenitor phenotype. This result underlines the necessity to tailor differentiation protocols to suit the innate properties of different cell lines.


Computational and structural biotechnology journal | 2015

Using Stem Cells to Model Diseases of the Outer Retina

Camille Yvon; Conor Ramsden; Amelia Lane; Michael B. Powner; Lyndon da Cruz; Peter J. Coffey; Amanda-Jayne F. Carr

Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE). It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC)-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential for its use in disease modelling. IPSCs provide an ideal platform to investigate normal and pathological retinogenesis, but also deliver a valuable source of retinal cell types for drug screening and cell therapy. In this review, we will provide some examples of the ways in which IPSCs have been used to model diseases of the outer retina including retinitis pigmentosa (RP), Usher syndrome (USH), Leber congenital amaurosis (LCA), gyrate atrophy (GA), juvenile neuronal ceroid lipofuscinosis (NCL), Best vitelliform macular dystrophy (BVMD) and age related macular degeneration (AMD).


Scientific Reports | 2017

Rescue of the MERTK phagocytic defect in a human iPSC disease model using translational read-through inducing drugs

Conor Ramsden; Britta Nommiste; Amelia Lane; Amanda-Jayne F. Carr; Michael B. Powner; Matthew J. K. Smart; Li Li Chen; Manickam N. Muthiah; Andrew R. Webster; Anthony T. Moore; Michael E. Cheetham; Lyndon da Cruz; Peter J. Coffey

Inherited retinal dystrophies are an important cause of blindness, for which currently there are no effective treatments. In order to study this heterogeneous group of diseases, adequate disease models are required in order to better understand pathology and to test potential therapies. Induced pluripotent stem cells offer a new way to recapitulate patient specific diseases in vitro, providing an almost limitless amount of material to study. We used fibroblast-derived induced pluripotent stem cells to generate retinal pigment epithelium (RPE) from an individual suffering from retinitis pigmentosa associated with biallelic variants in MERTK. MERTK has an essential role in phagocytosis, one of the major functions of the RPE. The MERTK deficiency in this individual results from a nonsense variant and so the MERTK-RPE cells were subsequently treated with two translational readthrough inducing drugs (G418 & PTC124) to investigate potential restoration of expression of the affected gene and production of a full-length protein. The data show that PTC124 was able to reinstate phagocytosis of labeled photoreceptor outer segments at a reduced, but significant level. These findings represent a confirmation of the usefulness of iPSC derived disease specific models in investigating the pathogenesis and screening potential treatments for these rare blinding disorders.


Human Molecular Genetics | 2017

Arl3 and RP2 regulate the trafficking of ciliary tip kinesins.

Nele Schwarz; Amelia Lane; Katarina Jovanovic; David A. Parfitt; Mònica Aguilà; Clare L. Thompson; Lyndon da Cruz; Peter J. Coffey; J. Paul Chapple; Alison J. Hardcastle; Michael E. Cheetham

Abstract Ciliary trafficking defects are the underlying cause of many ciliopathies, including Retinitis Pigmentosa (RP). Anterograde intraflagellar transport (IFT) is mediated by kinesin motor proteins; however, the function of the homodimeric Kif17 motor in cilia is poorly understood, whereas Kif7 is known to play an important role in stabilizing cilia tips. Here we identified the ciliary tip kinesins Kif7 and Kif17 as novel interaction partners of the small GTPase Arl3 and its regulatory GTPase activating protein (GAP) Retinitis Pigmentosa 2 (RP2). We show that Arl3 and RP2 mediate the localization of GFP‐Kif17 to the cilia tip and competitive binding of RP2 and Arl3 with Kif17 complexes. RP2 and Arl3 also interact with another ciliary tip kinesin, Kif7, which is a conserved regulator of Hedgehog (Hh) signaling. siRNA‐mediated loss of RP2 or Arl3 reduced the level of Kif7 at the cilia tip. This was further validated by reduced levels of Kif7 at cilia tips detected in fibroblasts and induced pluripotent stem cell (iPSC) 3D optic cups derived from a patient carrying an RP2 nonsense mutation c.519C > T (p.R120X), which lack detectable RP2 protein. Translational read‐through inducing drugs (TRIDs), such as PTC124, were able to restore Kif7 levels at the ciliary tip of RP2 null cells. Collectively, our findings suggest that RP2 and Arl3 regulate the trafficking of specific kinesins to cilia tips and provide additional evidence that TRIDs could be clinically beneficial for patients with this retinal degeneration.


Scientific Reports | 2016

Mislocalisation of BEST1 in iPSC-derived retinal pigment epithelial cells from a family with autosomal dominant vitreoretinochoroidopathy (ADVIRC)

David Allan Carter; Matthew J. K. Smart; William V. G. Letton; Conor Ramsden; Britta Nommiste; Li Li Chen; Kate Fynes; Manickam N. Muthiah; Pollyanna Goh; Amelia Lane; Michael B. Powner; Andrew R. Webster; Lyndon da Cruz; Anthony T. Moore; Peter J. Coffey; Amanda-Jayne F. Carr

Autosomal dominant vitreoretinochoroidopathy (ADVIRC) is a rare, early-onset retinal dystrophy characterised by distinct bands of circumferential pigmentary degeneration in the peripheral retina and developmental eye defects. ADVIRC is caused by mutations in the Bestrophin1 (BEST1) gene, which encodes a transmembrane protein thought to function as an ion channel in the basolateral membrane of retinal pigment epithelial (RPE) cells. Previous studies suggest that the distinct ADVIRC phenotype results from alternative splicing of BEST1 pre-mRNA. Here, we have used induced pluripotent stem cell (iPSC) technology to investigate the effects of an ADVIRC associated BEST1 mutation (c.704T > C, p.V235A) in patient-derived iPSC-RPE. We found no evidence of alternate splicing of the BEST1 transcript in ADVIRC iPSC-RPE, however in patient-derived iPSC-RPE, BEST1 was expressed at the basolateral membrane and the apical membrane. During human eye development we show that BEST1 is expressed more abundantly in peripheral RPE compared to central RPE and is also expressed in cells of the developing retina. These results suggest that higher levels of mislocalised BEST1 expression in the periphery, from an early developmental stage, could provide a mechanism that leads to the distinct clinical phenotype observed in ADVIRC patients.


Human Molecular Genetics | 2017

REEP6 deficiency leads to retinal degeneration through disruption of ER homeostasis and protein trafficking

Smriti Agrawal; Thomas Burgoyne; Aiden Eblimit; James Bellingham; David A. Parfitt; Amelia Lane; Ralph C. Nichols; Chinwe Asomugha; Matthew J. Hayes; Peter M.G. Munro; Mingchu Xu; Keqing Wang; Clare E. Futter; Yumei Li; Rui Chen; Michael E. Cheetham

Abstract Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy. We recently identified mutations in REEP6, which encodes the receptor expression enhancing protein 6, in several families with autosomal recessive RP. REEP6 is related to the REEP and Yop1p family of ER shaping proteins and potential receptor accessory proteins, but the role of REEP6 in the retina is unknown. Here we characterize the disease mechanisms associated with loss of REEP6 function using a Reep6 knockout mouse generated by CRISPR/Cas9 gene editing. In control mice REEP6 was localized to the inner segment and outer plexiform layer of rod photoreceptors. The Reep6-/- mice exhibited progressive photoreceptor degeneration from P20 onwards. Ultrastructural analyses at P20 by transmission electron microscopy and 3View serial block face scanning EM revealed an expansion of the distal ER in the Reep6-/- rods and an increase in their number of mitochondria. Electroretinograms revealed photoreceptor dysfunction preceded degeneration, suggesting potential defects in phototransduction. There was no effect on the traffic of rhodopsin, Rom1 or peripherin/rds; however, the retinal guanylate cyclases GC1 and GC2 were severely affected in the Reep6 knockout animals, with almost undetectable expression. These changes correlated with an increase in C/EBP homologous protein (CHOP) expression and the activation of caspase 12, suggesting that ER stress contributes to cell death. Collectively, these data suggest that REEP6 plays an essential role in maintaining cGMP homeostasis though facilitating the stability and/or trafficking of guanylate cyclases and maintaining ER and mitochondrial homeostasis.


Biochemical Society Transactions | 2016

Using induced pluripotent stem cells to understand retinal ciliopathy disease mechanisms and develop therapies

David A. Parfitt; Amelia Lane; Conor Ramsden; Katarina Jovanovic; Peter J. Coffey; Alison J. Hardcastle; Michael E. Cheetham

The photoreceptor cells in the retina have a highly specialised sensory cilium, the outer segment (OS), which is important for detecting light. Mutations in cilia-related genes often result in retinal degeneration. The ability to reprogramme human cells into induced pluripotent stem cells and then differentiate them into a wide range of different cell types has revolutionised our ability to study human disease. To date, however, the challenge of producing fully differentiated photoreceptors in vitro has limited the application of this technology in studying retinal degeneration. In this review, we will discuss recent advances in stem cell technology and photoreceptor differentiation. In particular, the development of photoreceptors with rudimentary OS that can be used to understand disease mechanisms and as an important model to test potential new therapies for inherited retinal ciliopathies.

Collaboration


Dive into the Amelia Lane's collaboration.

Top Co-Authors

Avatar

Peter J. Coffey

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Michael E. Cheetham

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Parfitt

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison J. Hardcastle

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Britta Nommiste

UCL Institute of Ophthalmology

View shared research outputs
Researchain Logo
Decentralizing Knowledge