Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda M. Cooksey is active.

Publication


Featured researches published by Amanda M. Cooksey.


Genome Biology | 2012

Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes

John St. John; Edward L. Braun; Sally R. Isberg; Lee G. Miles; Amanda Yoon-Yee Chong; Jaime Gongora; Pauline Dalzell; C. Moran; Bertrand Bed'hom; Arhat Abzhanov; Shane C. Burgess; Amanda M. Cooksey; Todd A. Castoe; Nicholas G. Crawford; Llewellyn D. Densmore; Jennifer C. Drew; Scott V. Edwards; Brant C. Faircloth; Matthew K. Fujita; Matthew J. Greenwold; Federico G. Hoffmann; Jonathan M. Howard; Taisen Iguchi; Daniel E. Janes; Shahid Yar Khan; Satomi Kohno; A. P. Jason de Koning; Stacey L. Lance; Fiona M. McCarthy; John E. McCormack

The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described.


Journal of Animal Science | 2011

PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: A proteome-based model for sperm mobility phenotype

D. P. Froman; A.J. Feltmann; Ken Pendarvis; Amanda M. Cooksey; Shane C. Burgess; Douglas D. Rhoads

Sperm mobility is defined as sperm movement against resistance at body temperature. Although all mobile sperm are motile, not all motile sperm are mobile. Sperm mobility is a primary determinant of male fertility in the chicken. Previous work explained phenotypic variation at the level of the sperm cell and the mitochondrion. The present work was conducted to determine if phenotypic variation could be explained at the level of the proteome using semen donors from lines of chickens selected for low or high sperm mobility. We began by testing the hypothesis that premature mitochondrial failure, and hence sperm immobility, arose from Ca(2+) overloading. The hypothesis was rejected because staining with a cell permeant Ca(2+)-specific dye was not enhanced in the case of low mobility sperm. The likelihood that sperm require little energy before ejaculation and the realization that the mitochondrial permeability transition can be induced by oxidative stress arising from inadequate NADH led to the hypothesis that glycolytic enzymes might differ between lines. This possibility was confirmed by 2-dimensional electrophoresis for aldolase and phosphoglycerate kinase 1. This outcome warranted evaluation of the whole cell proteome by differential detergent fractionation and mass spectrometry. Bioinformatics evaluation of proteins with different expression levels confirmed the likelihood that ATP metabolism and glycolysis differ between lines. This experimental outcome corroborated differences observed between lines in previous work, which include mitochondrial ultrastructure, sperm cell oxygen consumption, and straight line velocity. Although glycolytic proteins were more abundant within highly mobile sperm, quantitative PCR of representative testis RNA, which included mRNA for phosphoglycerate kinase 1, found no difference between lines. In summary, we propose a proteome-based model for sperm mobility phenotype in which a genetic predisposition puts sperm cells at risk of premature mitochondrial failure as they pass through the excurrent ducts of the testis. In other words, we attribute mitochondrial failure to sperm cell and reproductive tract attributes that interact to affect sperm in a stochastic manner before ejaculation. In conclusion, our work provides a starting point for understanding chicken semen quality in terms of gene networks.


PLOS ONE | 2012

Transcriptome-based differentiation of closely-related Miscanthus lines.

Philippe Chouvarine; Amanda M. Cooksey; Fiona M. McCarthy; David A. Ray; Brian S. Baldwin; Shane C. Burgess; Daniel G. Peterson

Background Distinguishing between individuals is critical to those conducting animal/plant breeding, food safety/quality research, diagnostic and clinical testing, and evolutionary biology studies. Classical genetic identification studies are based on marker polymorphisms, but polymorphism-based techniques are time and labor intensive and often cannot distinguish between closely related individuals. Illumina sequencing technologies provide the detailed sequence data required for rapid and efficient differentiation of related species, lines/cultivars, and individuals in a cost-effective manner. Here we describe the use of Illumina high-throughput exome sequencing, coupled with SNP mapping, as a rapid means of distinguishing between related cultivars of the lignocellulosic bioenergy crop giant miscanthus (Miscanthus × giganteus). We provide the first exome sequence database for Miscanthus species complete with Gene Ontology (GO) functional annotations. Results A SNP comparative analysis of rhizome-derived cDNA sequences was successfully utilized to distinguish three Miscanthus × giganteus cultivars from each other and from other Miscanthus species. Moreover, the resulting phylogenetic tree generated from SNP frequency data parallels the known breeding history of the plants examined. Some of the giant miscanthus plants exhibit considerable sequence divergence. Conclusions Here we describe an analysis of Miscanthus in which high-throughput exome sequencing was utilized to differentiate between closely related genotypes despite the current lack of a reference genome sequence. We functionally annotated the exome sequences and provide resources to support Miscanthus systems biology. In addition, we demonstrate the use of the commercial high-performance cloud computing to do computational GO annotation.


PLOS ONE | 2012

RNA-Seq Based Transcriptional Map of Bovine Respiratory Disease Pathogen “Histophilus somni 2336”

Ranjit Kumar; Mark L. Lawrence; James Watt; Amanda M. Cooksey; Shane C. Burgess; Bindu Nanduri

Genome structural annotation, i.e., identification and demarcation of the boundaries for all the functional elements in a genome (e.g., genes, non-coding RNAs, proteins and regulatory elements), is a prerequisite for systems level analysis. Current genome annotation programs do not identify all of the functional elements of the genome, especially small non-coding RNAs (sRNAs). Whole genome transcriptome analysis is a complementary method to identify “novel” genes, small RNAs, regulatory regions, and operon structures, thus improving the structural annotation in bacteria. In particular, the identification of non-coding RNAs has revealed their widespread occurrence and functional importance in gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Histophilus somni, one of the causative agents of Bovine Respiratory Disease (BRD) as well as bovine infertility, abortion, septicemia, arthritis, myocarditis, and thrombotic meningoencephalitis. In this study, we report a single nucleotide resolution transcriptome map of H. somni strain 2336 using RNA-Seq method. The RNA-Seq based transcriptome map identified 94 sRNAs in the H. somni genome of which 82 sRNAs were never predicted or reported in earlier studies. We also identified 38 novel potential protein coding open reading frames that were absent in the current genome annotation. The transcriptome map allowed the identification of 278 operon (total 730 genes) structures in the genome. When compared with the genome sequence of a non-virulent strain 129Pt, a disproportionate number of sRNAs (∼30%) were located in genomic region unique to strain 2336 (∼18% of the total genome). This observation suggests that a number of the newly identified sRNAs in strain 2336 may be involved in strain-specific adaptations.


PLOS ONE | 2014

Impact of the genetic background on the composition of the chicken plasma MiRNome in response to a stress.

Marie-Laure Endale Ahanda; Tatiana Zerjal; Sophie Dhorne-Pollet; Andrea Rau; Amanda M. Cooksey; Elisabetta Giuffra

Circulating extra-cellular microRNAs (miRNAs) have emerged as promising minimally invasive markers in human medicine. We evaluated miRNAs isolated from total plasma as biomarker candidates of a response to an abiotic stress (feed deprivation) in a livestock species. Two chicken lines selected for high (R+) and low (R−) residual feed intake were chosen as an experimental model because of their extreme divergence in feed intake and energy metabolism. Adult R+ and R− cocks were sampled after 16 hours of feed deprivation and again four hours after re-feeding. More than 292 million sequence reads were generated by small RNA-seq of total plasma RNA. A total of 649 mature miRNAs were identified; after quality filtering, 148 miRNAs were retained for further analyses. We identified 23 and 19 differentially abundant miRNAs between feeding conditions and between lines respectively, with only two miRNAs identified in both comparisons. We validated a panel of six differentially abundant miRNAs by RT-qPCR on a larger number of plasma samples and checked their response to feed deprivation in liver. Finally, we evaluated the conservation and tissue distribution of differentially abundant miRNAs in plasma across a variety of red jungle fowl tissues. We show that the chicken plasma miRNome reacts promptly to the alteration of the animal physiological condition driven by a feed deprivation stress. The plasma content of stress-responsive miRNAs is strongly influenced by the genetic background, with differences reflecting the phenotypic divergence acquired through long-term selection, as evidenced by the profiles of conserved miRNAs with a regulatory role in energy metabolism (gga-miR-204, gga-miR-let-7f-5p and gga-miR-122-5p). These results reinforce the emerging view in human medicine that even small genetic differences can have a considerable impact on the resolution of biomarker studies, and provide support for the emerging interest in miRNAs as potential novel and minimally invasive biomarkers for livestock species.


Methods of Molecular Biology | 2009

Sequential Detergent Extraction Prior to Mass Spectrometry Analysis

Fiona M. McCarthy; Amanda M. Cooksey; Shane C. Burgess

Sequential detergent extraction of proteins from eukaryotic cells has been used to increase proteome coverage of 2D-PAGE. We have adapted sequential detergent extraction for use with the high-throughput non-electrophoretic proteomics method of liquid chromatography and electrospray ionisation tandem mass spectrometry. This method of extraction yields comprehensive proteomes that include up to twice as many membrane proteins as other published methods. Two thirds of these membrane proteins have more than one transmembrane domain and many of these have multiple transmembrane domains. Since sequential detergent extraction (SDE) separates proteins based upon their physicochemistry and sub-cellular localisation, this method also provides useful data about cellular localisation.


PLOS ONE | 2009

Identifying Blood Biomarkers and Physiological Processes That Distinguish Humans with Superior Performance under Psychological Stress

Amanda M. Cooksey; Nausheen Momen; Russell Stocker; Shane C. Burgess

Background Attrition of students from aviation training is a serious financial and operational concern for the U.S. Navy. Each late stage navy aviator training failure costs the taxpayer over


Cytoskeleton | 2008

Localization of spindle checkpoint proteins in cells undergoing mitosis with unreplicated genomes

Mary Kathrine Johnson; Amanda M. Cooksey; Dwayne Wise

1,000,000 and ultimately results in decreased operational readiness of the fleet. Currently, potential aviators are selected based on the Aviation Selection Test Battery (ASTB), which is a series of multiple-choice tests that evaluate basic and aviation-related knowledge and ability. However, the ASTB does not evaluate a persons response to stress. This is important because operating sophisticated aircraft demands exceptional performance and causes high psychological stress. Some people are more resistant to this type of stress, and consequently better able to cope with the demands of naval aviation, than others. Methodology/Principal Findings Although many psychological studies have examined psychological stress resistance none have taken advantage of the human genome sequence. Here we use high-throughput -omic biology methods and a novel statistical data normalization method to identify plasma proteins associated with human performance under psychological stress. We identified proteins involved in four basic physiological processes: innate immunity, cardiac function, coagulation and plasma lipid physiology. Conclusions/Significance The proteins identified here further elucidate the physiological response to psychological stress and suggest a hypothesis that stress-susceptible pilots may be more prone to shock. This work also provides potential biomarkers for screening humans for capability of superior performance under stress.


Xenotransplantation | 2018

In vitro characterization of neonatal, juvenile, and adult porcine islet oxygen demand, β-cell function, and transcriptomes

Kate E. Smith; William G. Purvis; Melissa A. Davis; Catherine G. Min; Amanda M. Cooksey; Craig S. Weber; Jana Jandova; Nicholas D. Price; Diana S. Molano; J.B. Stanton; Amy C. Kelly; Leah V. Steyn; Ronald M. Lynch; Sean W. Limesand; Michael Alexander; Jonathan R. T. Lakey; Karen Seeberger; Gregory S. Korbutt; Kate R. Mueller; Bernhard J. Hering; Fiona M. McCarthy; Klearchos K. Papas

CHO cells can be arrested with hydoxyurea at the beginning of the DNA synthesis phase of the cell cycle. Subsequent treatment with the xanthine, caffeine, induces cells to bypass the S-phase checkpoint and enter unscheduled mitosis [Schlegel and Pardee,1986, Science 232:1264-1266]. These treated cells build a normal spindle and distribute kinetochores, unattached to chromosomes, to their daughter cells [Brinkley et al.,1988, Nature 336:251-254; Zinkowski et al.,1991, J Cell Biol 113:1091-1110; Wise and Brinkley,1997, Cell Motil Cytoskeleton 36:291-302; Balczon et al.,2003, Chromosoma 112:96-102]. To investigate how these cells distribute kinetochores to daughter cells, we analyzed the spindle checkpoint components, Mad2, CENP-E, and the 3F3 phosphoepitope, using immunofluorescence and digital microscopy. Even though the kinetochores were unpaired and DNA was fragmented, the tension, alignment, and motor components of the checkpoint were found to be present and localized as predicted in prometaphase and metaphase. This unusual mitosis proves that a cell can successfully localize checkpoint proteins and divide even when kinetochores are unpaired and fragmented.


The Open Proteomics Journal | 2008

Quantitative Serum Proteomics of Tryptophan Nutrition Using Bi-directional Heavy Oxygen Labeling with a RuBisCO Internal Standard

Amanda M. Cooksey; Alejandro Corzo; Marek D. Koter; Shane C. Burgess

There is currently a shortage of human donor pancreata which limits the broad application of islet transplantation as a treatment for type 1 diabetes. Porcine islets have demonstrated potential as an alternative source, but a study evaluating islets from different donor ages under unified protocols has yet to be conducted.

Collaboration


Dive into the Amanda M. Cooksey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bindu Nanduri

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel G. Peterson

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Watt

California Department of Public Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge