Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken Pendarvis is active.

Publication


Featured researches published by Ken Pendarvis.


Microbiology | 2011

Polyamine biosynthesis and transport mechanisms are crucial for fitness and pathogenesis of Streptococcus pneumoniae.

Pratik Shah; Bindu Nanduri; Edwin Swiatlo; Yinfa Ma; Ken Pendarvis

Polyamines such as cadaverine, putrescine and spermidine are polycationic molecules that have pleiotropic effects on cells via their interaction with nucleic acids. Streptococcus pneumoniae (the pneumococcus) is a Gram-positive pathogen capable of causing pneumonia, septicaemia, otitis media and meningitis. Pneumococci have a polyamine transport operon (potABCD) responsible for the binding and transport of putrescine and spermidine, and can synthesize cadaverine and spermidine using their lysine decarboxylase (cad) and spermidine synthase (speE) enzymes. Previous studies from our laboratory have shown that an increase in PotD expression is seen following exposure to various stresses, while during infection, potD inactivation significantly attenuates pneumococcal virulence, and anti-PotD immune responses are protective in mice. In spite of their relative importance, not much is known about the global contribution of polyamine biosynthesis and transport pathways to pneumococcal disease. Mutants deficient in polyamine biosynthesis (ΔspeE or Δcad) or transport genes (ΔpotABCD) were constructed and were found to be attenuated in murine models of pneumococcal colonization and pneumonia, either alone or in competition with the wild-type strain. The ΔspeE mutant was also attenuated during invasive disease, while the potABCD and cad genes seemed to be dispensable. HPLC analyses showed reduced intracellular polyamine levels in all mutant strains compared with wild-type bacteria. High-throughput proteomic analyses indicated reduced expression of growth, replication and virulence factors in mutant strains. Thus, polyamine biosynthesis and transport mechanisms are intricately linked to the fitness, survival and pathogenesis of the pneumococcus in host microenvironments, and may represent important targets for prophylactic and therapeutic interventions.


Journal of Animal Science | 2011

PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: A proteome-based model for sperm mobility phenotype

D. P. Froman; A.J. Feltmann; Ken Pendarvis; Amanda M. Cooksey; Shane C. Burgess; Douglas D. Rhoads

Sperm mobility is defined as sperm movement against resistance at body temperature. Although all mobile sperm are motile, not all motile sperm are mobile. Sperm mobility is a primary determinant of male fertility in the chicken. Previous work explained phenotypic variation at the level of the sperm cell and the mitochondrion. The present work was conducted to determine if phenotypic variation could be explained at the level of the proteome using semen donors from lines of chickens selected for low or high sperm mobility. We began by testing the hypothesis that premature mitochondrial failure, and hence sperm immobility, arose from Ca(2+) overloading. The hypothesis was rejected because staining with a cell permeant Ca(2+)-specific dye was not enhanced in the case of low mobility sperm. The likelihood that sperm require little energy before ejaculation and the realization that the mitochondrial permeability transition can be induced by oxidative stress arising from inadequate NADH led to the hypothesis that glycolytic enzymes might differ between lines. This possibility was confirmed by 2-dimensional electrophoresis for aldolase and phosphoglycerate kinase 1. This outcome warranted evaluation of the whole cell proteome by differential detergent fractionation and mass spectrometry. Bioinformatics evaluation of proteins with different expression levels confirmed the likelihood that ATP metabolism and glycolysis differ between lines. This experimental outcome corroborated differences observed between lines in previous work, which include mitochondrial ultrastructure, sperm cell oxygen consumption, and straight line velocity. Although glycolytic proteins were more abundant within highly mobile sperm, quantitative PCR of representative testis RNA, which included mRNA for phosphoglycerate kinase 1, found no difference between lines. In summary, we propose a proteome-based model for sperm mobility phenotype in which a genetic predisposition puts sperm cells at risk of premature mitochondrial failure as they pass through the excurrent ducts of the testis. In other words, we attribute mitochondrial failure to sperm cell and reproductive tract attributes that interact to affect sperm in a stochastic manner before ejaculation. In conclusion, our work provides a starting point for understanding chicken semen quality in terms of gene networks.


Journal of Proteome Research | 2014

Proteomic analysis of cross protection provided between cold and osmotic stress in Listeria monocytogenes.

Joseph R. Pittman; Joe O. Buntyn; Gabriel Posadas; Bindu Nanduri; Ken Pendarvis; Janet R. Donaldson

Listeria monocytogenes is a Gram-positive, foodborne pathogen responsible for approximately 28% of all food-related deaths each year in the United States. L. monocytogenes infections are linked to the consumption of minimally processed ready-to-eat (RTE) products such as cheese, deli meats, and cold-smoked finfish products. L. monocytogenes is resistant to stresses commonly encountered in the food-processing environment, including low pH, high salinity, oxygen content, and various temperatures. The purpose of this study was to determine if cells habituated at low temperatures would result in cross-protective effects against osmotic stress. We found that cells exposed to refrigerated temperatures prior to a mild salt stress treatment had increased survival in NaCl concentrations of 3%. Additionally, the longer the cells were pre-exposed to cold temperatures, the greater the increase in survival in 3% NaCl. A proteomics analysis was performed in triplicate in order to elucidate mechanisms involved in cold-stress induced cross protection against osmotic stress. Proteins involved in maintenance of the cell wall and cellular processes, such as penicillin binding proteins and osmolyte transporters, and processes involving amino acid metabolism, such as osmolyte synthesis, transport, and lipid biosynthesis, had the greatest increase in expression when cells were exposed to cold temperatures prior to salt. By gaining a better understanding of how this pathogen adapts physiologically to various environmental conditions, improvements can be made in detection and mitigation strategies.


Proteome Science | 2013

Nuclear proteome response to cell wall removal in rice (Oryza sativa)

Hana Mujahid; Feng Tan; Jian Zhang; Babi Ramesh Reddy Nallamilli; Ken Pendarvis; Zhaohua Peng

Plant cells are routinely exposed to various pathogens and environmental stresses that cause cell wall perturbations. Little is known of the mechanisms that plant cells use to sense these disturbances and transduce corresponding signals to regulate cellular responses to maintain cell wall integrity. Previous studies in rice have shown that removal of the cell wall leads to substantial chromatin reorganization and histone modification changes concomitant with cell wall re-synthesis. But the genes and proteins that regulate these cellular responses are still largely unknown. Here we present an examination of the nuclear proteome differential expression in response to removal of the cell wall in rice suspension cells using multiple nuclear proteome extraction methods. A total of 382 nuclear proteins were identified with two or more peptides, including 26 transcription factors. Upon removal of the cell wall, 142 nuclear proteins were up regulated and 112 were down regulated. The differentially expressed proteins included transcription factors, histones, histone domain containing proteins, and histone modification enzymes. Gene ontology analysis of the differentially expressed proteins indicates that chromatin & nucleosome assembly, protein-DNA complex assembly, and DNA packaging are tightly associated with cell wall removal. Our results indicate that removal of the cell wall imposes a tremendous challenge to the cells. Consequently, plant cells respond to the removal of the cell wall in the nucleus at every level of the regulatory hierarchy.


Journal of Medical Microbiology | 2013

Proteomic analysis of the response of Listeria monocytogenes to bile salts under anaerobic conditions

Angela Payne; Ty B. Schmidt; Bindu Nanduri; Ken Pendarvis; Joseph R. Pittman; Justin A. Thornton; Jessica Grissett; Janet R. Donaldson

Listeria monocytogenes is a food-borne pathogen responsible for the disease listeriosis. The infectious process depends on survival in the high bile-salt conditions encountered throughout the gastrointestinal tract, including the gallbladder. However, it is not clear how bile-salt resistance mechanisms are induced, especially under physiologically relevant conditions. This study sought to determine how the L. monocytogenes strains EGDe (serovar 1/2a), F2365 (serovar 4a) and HCC23 (serovar 4b) respond to bile salts under anaerobic conditions. Changes in the expressed proteome were analysed using multidimensional protein identification technology coupled with electrospray ionization tandem mass spectrometry. In general, the response to bile salts among the strains tested involved significant alterations in the presence of cell-wall-associated proteins, DNA repair proteins, protein folding chaperones and oxidative stress-response proteins. Strain viability correlated with an initial osmotic stress response, yet continued survival for EGDe and F2365 involved different mechanisms. Specifically, proteins associated with biofilm formation in EGDe and transmembrane efflux pumps in F2365 were expressed, suggesting that variations exist in how virulent strains respond and adapt to high bile-salt environments. These results indicate that the bile-salt response varies among these serovars and that further research is needed to elucidate how the response to bile salts correlates with colonization potential in vivo.


BMC Systems Biology | 2012

Nuclear Factor kappa B is central to Marek’s Disease herpesvirus induced neoplastic transformation of CD30 expressing lymphocytes in-vivo

Shyamesh Kumar; Dusan Kunec; Joram Buza; Hsin I. Chiang; Huaijun Zhou; Sugalesini Subramaniam; Ken Pendarvis; Hans H. Cheng; Shane C. Burgess

BackgroundMarek’s Disease (MD) is a hyperproliferative, lymphomatous, neoplastic disease of chickens caused by the oncogenic Gallid herpesvirus type 2 (GaHV-2; MDV). Like several human lymphomas the neoplastic MD lymphoma cells overexpress the CD30 antigen (CD30hi) and are in minority, while the non-neoplastic cells (CD30lo) form the majority of population. MD is a unique natural in-vivo model of human CD30hi lymphomas with both natural CD30hi lymphomagenesis and spontaneous regression. The exact mechanism of neoplastic transformation from CD30lo expressing phenotype to CD30hi expressing neoplastic phenotype is unknown. Here, using microarray, proteomics and Systems Biology modeling; we compare the global gene expression of CD30lo and CD30hi cells to identify key pathways of neoplastic transformation. We propose and test a specific mechanism of neoplastic transformation, and genetic resistance, involving the MDV oncogene Meq, host gene products of the Nuclear Factor Kappa B (NF-κB) family and CD30; we also identify a novel Meq protein interactome.ResultsOur results show that a) CD30lo lymphocytes are pre-neoplastic precursors and not merely reactive lymphocytes; b) multiple transformation mechanisms exist and are potentially controlled by Meq; c) Meq can drive a feed-forward cycle that induces CD30 transcription, increases CD30 signaling which activates NF-κB, and, in turn, increases Meq transcription; d) Meq transcriptional repression or activation of the CD30 promoter generally correlates with polymorphisms in the CD30 promoter distinguishing MD-lymphoma resistant and susceptible chicken genotypes e) MDV oncoprotein Meq interacts with proteins involved in physiological processes central to lymphomagenesis.ConclusionsIn the context of the MD lymphoma microenvironment (and potentially in other CD30hi lymphomas as well), our results show that the neoplastic transformation is a continuum and the non-neoplastic cells are actually pre-neoplastic precursor cells and not merely immune bystanders. We also show that NF-κB is a central player in MDV induced neoplastic transformation of CD30-expressing lymphocytes in vivo. Our results provide insights into molecular mechanisms of neoplastic transformation in MD specifically and also herpesvirus induced lymphoma in general.


PLOS ONE | 2013

Ultrasonic incisions produce less inflammatory mediator response during early healing than electrosurgical incisions.

Bindu Nanduri; Ken Pendarvis; Leslie A. Shack; Ranjit Kumar; Jeffrey W. Clymer; Donna L. Korvick; Shane C. Burgess

As the use of laparoscopic surgery has become more widespread in recent years, the need has increased for minimally-invasive surgical devices that effectively cut and coagulate tissue with reduced tissue trauma. Although electrosurgery (ES) has been used for many generations, newly-developed ultrasonic devices (HARMONIC® Blade, HB) have been shown at a macroscopic level to offer better coagulation with less thermally-induced tissue damage. We sought to understand the differences between ES and HB at a microscopic level by comparing mRNA transcript and protein responses at the 3-day timepoint to incisions made by the devices in subcutaneous fat tissue in a porcine model. Samples were also assessed via histological examination. ES-incised tissue had more than twice as many differentially-expressed genes as HB (2,548 vs 1,264 respectively), and more differentially-expressed proteins (508 vs 432) compared to control (untreated) tissue. Evaluation of molecular functions using Gene Ontology showed that gene expression changes for the energized devices reflected the start of wound healing, including immune response and inflammation, while protein expression showed a slightly earlier stage, with some remnants of hemostasis. For both transcripts and proteins, ES exhibited a greater response than HB, especially in inflammatory mediators. These findings were in qualitative agreement with histological results. This study has shown that transcriptomics and proteomics can monitor the wound healing response following surgery and can differentiate between surgical devices. In agreement with clinical observations, electrosurgery was shown to incur a greater inflammatory immune response than an ultrasonic device during initial iatrogenic wound healing.


Proteomics | 2011

Proteome profile of the pipping muscle in broiler embryos

Adebayo Sokale; E. D. Peebles; W. Zhai; Ken Pendarvis; Shane C. Burgess; Tibor Pechan

This study is the first proteomics analysis of the muscularis complexus (pipping muscle) in chicken (Gallus gallus) broiler embryos. We used differential detergent fractionation and nano‐HPLC‐MS/MS analysis to identify 676 proteins from all cellular components. The identified proteins were functionally classified in accordance with their involvement in various cellular activities.


BMC Genomics | 2014

Proteogenomic mapping of Mycoplasma hyopneumoniae virulent strain 232

Ken Pendarvis; Matthew P. Padula; Jessica L. Tacchi; Andrew C. Petersen; Steven P. Djordjevic; Shane C. Burgess; Minion Fc

BackgroundMycoplasma hyopneumoniae causes respiratory disease in swine and contributes to the porcine respiratory disease complex, a major disease problem in the swine industry. The M. hyopneumoniae strain 232 genome is one of the smallest and best annotated microbial genomes, containing only 728 annotated genes and 691 known proteins. Standard protein databases for mass spectrometry only allow for the identification of known and predicted proteins, which if incorrect can limit our understanding of the biological processes at work. Proteogenomic mapping is a methodology which allows the entire 6-frame genome translation of an organism to be used as a mass spectrometry database to help identify unknown proteins as well as correct and confirm existing annotations. This methodology will be employed to perform an in-depth analysis of the M. hyopneumoniae proteome.ResultsProteomic analysis indicates 483 of 691 (70%) known M. hyopneumoniae strain 232 proteins are expressed under the culture conditions given in this study. Furthermore, 171 of 328 (52%) hypothetical proteins have been confirmed. Proteogenomic mapping resulted in the identification of previously unannotated genes gatC and rpmF and 5-prime extensions to genes mhp063, mhp073, and mhp451, all conserved and annotated in other M. hyopneumoniae strains and Mycoplasma species. Gene prediction with Prodigal, a prokaryotic gene predicting program, completely supports the new genomic coordinates calculated using proteogenomic mapping.ConclusionsProteogenomic mapping showed that the protein coding genes of the M. hyopneumoniae strain 232 identified in this study are well annotated. Only 1.8% of mapped peptides did not correspond to genes defined by the current genome annotation. This study also illustrates how proteogenomic mapping can be an important tool to help confirm, correct and append known gene models when using a genome sequence as search space for peptide mass spectra. Using a gene prediction program which scans for a wide variety of promoters can help ensure genes are accurately predicted or not missed completely. Furthermore, protein extraction using differential detergent fractionation effectively increases the number of membrane and cytoplasmic proteins identifiable my mass spectrometry.


PLOS ONE | 2011

Proteome and membrane fatty acid analyses on Oligotropha carboxidovorans OM5 grown under chemolithoautotrophic and heterotrophic conditions.

Debarati Paul; Ranjit Kumar; Bindu Nanduri; Todd French; Ken Pendarvis; Ashli Brown; Mark L. Lawrence; Shane C. Burgess

Oligotropha carboxidovorans OM5 T. (DSM 1227, ATCC 49405) is a chemolithoautotrophic bacterium able to utilize CO and H2 to derive energy for fixation of CO2. Thus, it is capable of growth using syngas, which is a mixture of varying amounts of CO and H2 generated by organic waste gasification. O. carboxidovorans is capable also of heterotrophic growth in standard bacteriologic media. Here we characterize how the O. carboxidovorans proteome adapts to different lifestyles of chemolithoautotrophy and heterotrophy. Fatty acid methyl ester (FAME) analysis of O. carboxidovorans grown with acetate or with syngas showed that the bacterium changes membrane fatty acid composition. Quantitative shotgun proteomic analysis of O. carboxidovorans grown in the presence of acetate and syngas showed production of proteins encoded on the megaplasmid for assimilating CO and H2 as well as proteins encoded on the chromosome that might have contributed to fatty acid and acetate metabolism. We found that adaptation to chemolithoautotrophic growth involved adaptations in cell envelope, oxidative homeostasis, and metabolic pathways such as glyoxylate shunt and amino acid/cofactor biosynthetic enzymes.

Collaboration


Dive into the Ken Pendarvis's collaboration.

Top Co-Authors

Avatar

Bindu Nanduri

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda M. Cooksey

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Janet R. Donaldson

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Monica A. Schmidt

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Ranjit Kumar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hana Mujahid

Mississippi State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge