Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amar M. Singh is active.

Publication


Featured researches published by Amar M. Singh.


Cell Stem Cell | 2009

The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming.

Amar M. Singh; Stephen Dalton

Pluripotent stem cells have long-term proliferative capacity and an unusual mode of cell-cycle regulation and can divide independently of extrinsic mitogenic signals. The last few years has seen evidence emerge that links cell-cycle regulation to the maintenance and establishment of pluripotency. Myc transcription factors appear to be central to this regulation. This review addresses these links and discusses how cell-cycle controls and Myc impact on the maintenance and establishment of pluripotency.


Cell Stem Cell | 2012

Signaling Network Crosstalk in Human Pluripotent Cells: A Smad2/3-Regulated Switch that Controls the Balance between Self-Renewal and Differentiation

Amar M. Singh; David Reynolds; Timothy S. Cliff; Satoshi Ohtsuka; Alexa L. Mattheyses; Yuhua Sun; Laura Menendez; Michael Kulik; Stephen Dalton

A general mechanism for how intracellular signaling pathways in human pluripotent cells are coordinated and how they maintain self-renewal remain to be elucidated. In this report, we describe a signaling mechanism where PI3K/Akt activity maintains self-renewal by restraining prodifferentiation signaling through suppression of the Raf/Mek/Erk and canonical Wnt signaling pathways. When active, PI3K/Akt establishes conditions where Activin A/Smad2,3 performs a pro-self-renewal function by activating target genes, including Nanog. When PI3K/Akt signaling is low, Wnt effectors are activated and function in conjunction with Smad2,3 to promote differentiation. The switch in Smad2,3 activity after inactivation of PI3K/Akt requires the activation of canonical Wnt signaling by Erk, which targets Gsk3β. In sum, we define a signaling framework that converges on Smad2,3 and determines its ability to regulate the balance between alternative cell states. This signaling paradigm has far-reaching implications for cell fate decisions during early embryonic development.


Cell Stem Cell | 2010

Myc Represses Primitive Endoderm Differentiation in Pluripotent Stem Cells

Keriayn N. Smith; Amar M. Singh; Stephen Dalton

The generation of induced pluripotent stem cells (iPSCs) provides a novel method to facilitate investigations into the mechanisms that control stem cell pluripotency and self-renewal. Myc has previously been shown to be critical for murine embryonic stem cell (mESC) maintenance, while also enhancing directed reprogramming of fibroblasts by effecting widespread changes in gene expression. Despite several studies identifying in vivo target genes, the precise mechanism by which Myc regulates pluripotency remains unknown. Here we report that codeletion of c- and N-MYC in iPSCs and ESCs results in their spontaneous differentiation to primitive endoderm. We show that Myc sustains pluripotency through repression of the primitive endoderm master regulator GATA6, while also contributing to cell cycle control by regulation of the mir-17-92 miRNA cluster. Our findings demonstrate the indispensable requirement for c- or N-myc in pluripotency beyond proliferative and metabolic control.


Stem cell reports | 2013

Cell-Cycle Control of Developmentally Regulated Transcription Factors Accounts for Heterogeneity in Human Pluripotent Cells

Amar M. Singh; James Chappell; Robert Trost; Li Lin; Tao Wang; Jie Tang; Hao Wu; Shaying Zhao; Peng Jin; Stephen Dalton

Summary Heterogeneity within pluripotent stem cell (PSC) populations is indicative of dynamic changes that occur when cells drift between different states. Although the role of metastability in PSCs is unclear, it appears to reflect heterogeneity in cell signaling. Using the Fucci cell-cycle indicator system, we show that elevated expression of developmental regulators in G1 is a major determinant of heterogeneity in human embryonic stem cells. Although signaling pathways remain active throughout the cell cycle, their contribution to heterogeneous gene expression is restricted to G1. Surprisingly, we identify dramatic changes in the levels of global 5-hydroxymethylcytosine, an unanticipated source of epigenetic heterogeneity that is tightly linked to cell-cycle progression and the expression of developmental regulators. When we evaluated gene expression in differentiating cells, we found that cell-cycle regulation of developmental regulators was maintained during lineage specification. Cell-cycle regulation of developmentally regulated transcription factors is therefore an inherent feature of the mechanisms underpinning differentiation.


Development | 2012

Xenopus Nanos1 is required to prevent endoderm gene expression and apoptosis in primordial germ cells

Fangfang Lai; Amar M. Singh; Mary Lou King

Nanos is expressed in multipotent cells, stem cells and primordial germ cells (PGCs) of organisms as diverse as jellyfish and humans. It functions together with Pumilio to translationally repress targeted mRNAs. Here we show by loss-of-function experiments that Xenopus Nanos1 is required to preserve PGC fate. Morpholino knockdown of maternal Nanos1 resulted in a striking decrease in PGCs and a loss of germ cells from the gonads. Lineage tracing and TUNEL staining reveal that Nanos1-deficient PGCs fail to migrate out of the endoderm. They appear to undergo apoptosis rather than convert to normal endoderm. Whereas normal PGCs do not become transcriptionally active until neurula, Nanos1-depleted PGCs prematurely exhibit a hyperphosphorylated RNA polymerase II C-terminal domain at the midblastula transition. Furthermore, they inappropriately express somatic genes characteristic of endoderm regulated by maternal VegT, including Xsox17α, Bix4, Mixer, GATA4 and Edd. We further demonstrate that Pumilio specifically binds VegT RNA in vitro and represses, along with Nanos1, VegT translation within PGCs. Repressed VegT RNA in wild-type PGCs is significantly less stable than VegT in Nanos1-depleted PGCs. Our data indicate that maternal VegT RNA is an authentic target of Nanos1/Pumilio translational repression. We propose that Nanos1 functions to translationally repress RNAs that normally specify endoderm and promote apoptosis, thus preserving the germline.


Genes & Development | 2013

MYC/MAX control ERK signaling and pluripotency by regulation of dual-specificity phosphatases 2 and 7

James Chappell; Yuhua Sun; Amar M. Singh; Stephen Dalton

Suppression of extracellular signal-regulated kinase (ERK) signaling is an absolute requirement for the maintenance of murine pluripotent stem cells (mPSCs) and requires the MYC-binding partner MAX. In this study, we define a mechanism for this by showing that MYC/MAX complexes suppress ERK activity by transcriptionally regulating two members of the dual-specificity phosphatase (DUSP) family. DUSPs function by binding and then inactivating ERK1,2 by dephosphorylating residues required for catalytic activity. MYC/MAX complexes achieve this by binding the promoters of DUSP2 and DUSP7, leading to their transcriptional activation, resulting in the attenuation of ERK activity. In the absence of MYC, ectopic DUSP2,7 expression severely delays differentiation, while loss of DUSP2,7 ectopically activates ERK, resulting in loss of pluripotency. These findings elucidate a novel regulatory role for MYC in PSC maintenance involving the stimulation of phosphatases that directly inhibit the MAPK/ERK signaling pathway. Moreover, it provides a mechanism for how leukemia inhibitory factor (LIF)/STAT3 signaling reaches across to the MAPK/ERK pathway through MYC and MAX to sustain pluripotency.


Stem cell reports | 2015

Cell-Cycle Control of Bivalent Epigenetic Domains Regulates the Exit from Pluripotency

Amar M. Singh; Yuhua Sun; Lin Li; Wenjuan Zhang; Tianming Wu; Shaying Zhao; Zhaohui S. Qin; Stephen Dalton

Summary Here we show that bivalent domains and chromosome architecture for bivalent genes are dynamically regulated during the cell cycle in human pluripotent cells. Central to this is the transient increase in H3K4-trimethylation at developmental genes during G1, thereby creating a “window of opportunity” for cell-fate specification. This mechanism is controlled by CDK2-dependent phosphorylation of the MLL2 (KMT2B) histone methyl-transferase, which facilitates its recruitment to developmental genes in G1. MLL2 binding is required for changes in chromosome architecture around developmental genes and establishes promoter-enhancer looping interactions in a cell-cycle-dependent manner. These cell-cycle-regulated loops are shown to be essential for activation of bivalent genes and pluripotency exit. These findings demonstrate that bivalent domains are established to control the cell-cycle-dependent activation of developmental genes so that differentiation initiates from the G1 phase.


Stem Cells International | 2015

Cell Cycle-Driven Heterogeneity: On the Road to Demystifying the Transitions between "Poised" and "Restricted" Pluripotent Cell States.

Amar M. Singh

Cellular heterogeneity is now considered an inherent property of most stem cell types, including pluripotent stem cells, somatic stem cells, and cancer stem cells, and this heterogeneity can exist at the epigenetic, transcriptional, and posttranscriptional levels. Several studies have indicated that the stochastic activation of signaling networks may promote heterogeneity and further that this heterogeneity may be reduced by their inhibition. But why different cells in the same culture respond in a nonuniform manner to the identical exogenous signals has remained unclear. Recent studies now demonstrate that the cell cycle position directly influences lineage specification and specifically that pluripotent stem cells initiate their differentiation from the G1 phase. These studies suggest that cells in G1 are uniquely “poised” to undergo cell specification. G1 cells are therefore more prone to respond to differentiation cues, which may explain the heterogeneity of developmental factors, such as Gata6, and pluripotency factors, such as Nanog, in stem cell cultures. Overall, this raises the possibility that G1 serves as a “Differentiation Induction Point.” In this review, we will reexamine the literature describing heterogeneity of pluripotent stem cells, while highlighting the role of the cell cycle as a major determinant.


Methods | 2016

Utilizing FUCCI reporters to understand pluripotent stem cell biology.

Amar M. Singh; Robert Trost; Benjamin R. Boward; Stephen Dalton

The fluorescence ubiquitination cell cycle indicator (FUCCI) system provides a powerful method to evaluate cell cycle mechanisms associated with stem cell self-renewal and cell fate specification. By integrating the FUCCI system into human pluripotent stem cells (hPSCs) it is possible to isolate homogeneous fractions of viable cells representative of all cell cycle phases. This method avoids problems associated with traditional tools used for cell cycle analysis such as synchronizing drugs, elutriation and temperature sensitive mutants. Importantly, FUCCI reporters allow cell cycle events in dynamic systems, such as differentiation, to be evaluated. Initial reports on the FUCCI system focused on its strengths in reporting spatio-temporal aspects of cell cycle events in living cells and developmental models. In this report, we describe approaches that broaden the application of FUCCI reporters in PSCs through incorporation of FACS. This approach allows molecular analysis of the cell cycle in stem cell systems that were not previously possible.


Trends in Endocrinology and Metabolism | 2018

What Can ‘Brown-ing’ Do For You?

Amar M. Singh; Stephen Dalton

Human stem cell-based models of thermogenic adipocytes provide an opportunity for the establishment of new therapeutics, modeling of disease mechanisms, and understanding of development. Pluripotent stem cells, adipose-derived stem cells/preadipocytes, and programming-reprogramming-based approaches have been used to develop cell-based platforms for drug screening and transplantable therapeutics in the metabolic disease arena. Here we provide a detailed overview of these approaches, the latest advances in this field, and the opportunities and shortcomings they present. Moreover, we comment on how stem-cell-based platforms can be best utilized in the future for the treatment and understanding of metabolic diseases, including type 2 diabetes and associated medical issues such as obesity.

Collaboration


Dive into the Amar M. Singh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuhua Sun

University of Georgia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge