Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Valente is active.

Publication


Featured researches published by Elena Valente.


Infection and Immunity | 2010

Involvement of Inflammatory Chemokines in Survival of Human Monocytes Fed with Malarial Pigment

Giuliana Giribaldi; Mauro Prato; Daniela Ulliers; Valentina Gallo; Evelin Schwarzer; Oskar B. Akide-Ndunge; Elena Valente; Silvia Saviozzi; Raffaele A. Calogero; Paolo Arese

ABSTRACT Hemozoin (HZ)-fed monocytes are exposed to strong oxidative stress, releasing large amounts of peroxidation derivatives with subsequent impairment of numerous functions and overproduction of proinflammatory cytokines. However, the histopathology at autopsy of tissues from patients with severe malaria showed abundant HZ in Kupffer cells and other tissue macrophages, suggesting that functional impairment and cytokine production are not accompanied by cell death. The aim of the present study was to clarify the role of HZ in cell survival, focusing on the qualitative and temporal expression patterns of proinflammatory and antiapoptotic molecules. Immunocytochemical and flow cytometric analyses showed that the long-term viability of human monocytes was unaffected by HZ. Short-term analysis by macroarray of a complete panel of cytokines and real-time reverse transcription (RT)-PCR experiments showed that HZ immediately induced interleukin-1β (IL-1β) gene expression, followed by transcription of eight additional chemokines (IL-8, epithelial cell-derived neutrophil-activating peptide 78 [ENA-78], growth-regulated oncogene α [GROα], GROβ, GROγ, macrophage inflammatory protein 1α [MIP-1α], MIP-1β, and monocyte chemoattractant protein 1 [MCP-1]), two cytokines (tumor necrosis factor alpha [TNF-α] and IL-1receptor antagonist [IL-1RA]), and the cytokine/chemokine-related proteolytic enzyme matrix metalloproteinase 9 (MMP-9). Furthermore, real-time RT-PCR showed that 15-HETE, a potent lipoperoxidation derivative generated by HZ through heme catalysis, recapitulated the effects of HZ on the expression of four of the chemokines. Intermediate-term investigation by Western blotting showed that HZ increased expression of HSP27, a chemokine-related protein with antiapoptotic properties. Taken together, the present data suggest that apoptosis of HZ-fed monocytes is prevented through a cascade involving 15-HETE-mediated upregulation of IL-1β transcription, rapidly sustained by chemokine, TNF-α, MMP-9, and IL-1RA transcription and upregulation of HSP27 protein expression.


Molecular and Biochemical Parasitology | 1999

Hemozoin stability and dormant induction of heme oxygenase in hemozoin-fed human monocytes.

Evelin Schwarzer; Francesco De Matteis; Giuliana Giribaldi; Daniela Ulliers; Elena Valente; Paolo Arese

Human monocytes avidly ingest malarial pigment, hemozoin. Phagocytosed hemozoin persists in the monocyte for a long time and modifies important monocyte functions. Stability of phagocytosed hemozoin may depend on modifications of the hemozoin heme moiety or reduced ability to express heme-inducible heme oxygenase. We show here that the spectral characteristics of alkali-solubilized hemozoin were identical to those of authentic heme, although hemozoin was solubilized by alkali much more slowly than authentic heme. Alkali-solubilized hemozoin was a substrate of microsomal rat heme oxygenase and bilirubin reductase, with bilirubin as the main final product. Hemozoin feeding to human monocytes did not induce heme oxygenase, but authentic heme and alkali-solubilized hemozoin supplemented to hemozoin-fed monocytes induced heme oxygenase and were degraded normally. Lysosomes isolated from hemozoin-fed monocytes released only traces of heme while lysosomes from erythrocyte-fed monocytes liberated considerable quantities of heme. Lack of heme release from hemozoin did not depend on proteolysis-resistant, heme-binding proteins, since lysosomal proteases fully degraded hemozoin-associated proteins but did not solubilize hemozoin. In conclusion, our data indicate that lack of induction of HO1 is due to the intrinsic structural characteristics of hemozoin and not to hemozoin-mediated impairment of the mechanism of HO1 induction.


PLOS ONE | 2012

Haemozoin Induces Early Cytokine-Mediated Lysozyme Release from Human Monocytes through p38 MAPK- and NF-kappaB- Dependent Mechanisms

Manuela Polimeni; Elena Valente; Elisabetta Aldieri; Amina Khadjavi; Giuliana Giribaldi; Mauro Prato

Malarial pigment (natural haemozoin, HZ) is a ferriprotoporphyrin IX crystal produced by Plasmodium parasites after haemoglobin catabolism. HZ-fed human monocytes are functionally compromised, releasing increased amounts of pro-inflammatory molecules, including cytokines, chemokines and cytokine-related proteolytic enzyme Matrix Metalloproteinase-9 (MMP-9), whose role in complicated malaria has been recently suggested. In a previous work HZ was shown to induce through TNFalpha production the release of monocytic lysozyme, an enzyme stored in gelatinase granules with MMP-9. Here, the underlying mechanisms were investigated. Results showed that HZ lipid moiety promoted early but not late lysozyme release. HZ-dependent lysozyme induction was abrogated by anti-TNFalpha/IL-1beta/MIP-1alpha blocking antibodies and mimicked by recombinant cytokines. Moreover, HZ early activated either p38 MAPK or NF-kappaB pathways by inducing: p38 MAPK phosphorylation; cytosolic I-kappaBalpha phosphorylation and degradation; NF-kappaB nuclear translocation and DNA-binding. Inhibition of both routes through selected molecules (SB203580, quercetin, artemisinin, parthenolide) prevented HZ-dependent lysozyme release. These data suggest that HZ-triggered overproduction of TNFalpha, IL-1beta and MIP-1alpha mediates induction of lysozyme release from human monocytes through activation of p38 MAPK and NF-kappaB pathways, providing new evidence on mechanisms underlying the HZ-enhanced monocyte degranulation in falciparum malaria and the potential role for lysozyme as a new affordable marker in severe malaria.


Cell Biochemistry and Function | 2014

Involvement of p38 MAPK in haemozoin-dependent MMP-9 enhancement in human monocytes

Amina Khadjavi; Elena Valente; Giuliana Giribaldi; Mauro Prato

The lipid moiety of natural haemozoin (nHZ, malarial pigment) was previously shown to enhance expression and release of human monocyte matrix metalloproteinase‐9 (MMP‐9), and a major role for 15‐(S,R)‐hydroxy‐6,8,11,13‐eicosatetraenoic acid (15‐HETE), a nHZ lipoperoxidation product, was proposed. Here, the underlying mechanisms were investigated, focusing on the involvement of mitogen‐activated protein kinases (MAPKs). Results showed that nHZ promoted either early or late p38 MAPK phosphorylation; however, nHZ did not modify basal phosphorylation/expression ratios of extracellular signal‐regulated kinase‐1/2 and c‐jun N‐terminal kinase‐1/2. 15‐HETE mimicked nHZ effects on p38 MAPK, whereas lipid‐free synthetic (s)HZ and delipidized (d)HZ did not. Consistently, both nHZ and 15‐HETE also promoted phosphorylation of MAPK‐activated protein kinase‐2, a known p38 MAPK substrate; such an effect was abolished by SB203580, a synthetic p38 MAPK inhibitor. SB203580 also abrogated nHZ‐dependent and 15‐HETE‐dependent enhancement of MMP‐9 mRNA and protein (latent and activated forms) levels in cell lysates and supernatants. Collectively, these data suggest that in human monocytes, nHZ and 15‐HETE upregulate MMP‐9 expression and secretion through activation of p38 MAPK pathway. The present work provides new evidence on mechanisms underlying MMP‐9 deregulation in malaria, which might be helpful to design new specific drugs for adjuvant therapy in complicated malaria. Copyright


Biofactors | 2013

Role of 15‐hydroxyeicosatetraenoic acid in hemozoin‐induced lysozyme release from human adherent monocytes

Manuela Polimeni; Elena Valente; Elisabetta Aldieri; Amina Khadjavi; Giuliana Giribaldi; Mauro Prato

Natural hemozoin (nHZ), a lipid-bound ferriprotoporphyrin IX crystal produced by Plasmodium parasites after hemoglobin catabolism, seriously compromises the functions of human monocytes, and 15-hydroxyeicosatetraenoic acid (15-HETE) and 4-hydroxynonenal (4-HNE), two nHZ lipoperoxidation products, have been related to such a functional impairment. nHZ was recently shown to promote inflammation-mediated lysozyme release from human monocytes through p38 mitogen-activated protein kinase- (MAPK)- and nuclear factor (NF)-κB-dependent mechanisms. This study aimed at identifying the molecule of nHZ lipid moiety that was responsible for these effects. Results showed that 15-HETE mimicked nHZ effects on lysozyme release, whereas 4-HNE did not. 15-HETE-enhanced lysozyme release was abrogated by anti-TNF-α and anti-IL-1β-blocking antibodies and mimicked by recombinant cytokines; on the contrary, MIP-1α/CCL3 was not involved as a soluble mediator of 15-HETE effects. Moreover, 15-HETE early activated p38 MAPK and NF-κB pathways by inducing p38 MAPK phosphorylation; cytosolic I-κBα phosphorylation and degradation; NF-κB nuclear translocation and DNA-binding. Inhibition of both routes through chemical inhibitors (SB203580, quercetin, artemisinin, and parthenolide) prevented 15-HETE-dependent lysozyme release. Collectively, these data suggest that 15-HETE plays a major role in nHZ-enhanced monocyte degranulation.


Asian Pacific Journal of Tropical Medicine | 2011

Macrophage inflammatory protein-1alpha mediates matrix metalloproteinase-9 enhancement in human adherent monocytes fed with malarial pigment.

Giuliana Giribaldi; Elena Valente; Amina Khadjavi; Manuela Polimeni; Mauro Prato

OBJECTIVE To investigate the role of macrophage inflammatory protein-1alpha (MIP-1alpha) in the detrimental enhancement of matrix metalloproteinase-9 (MMP-9) expression, release and activity induced by phagocytosis of malarial pigment (haemozoin, HZ) in human monocytes. METHODS Human adherent monocytes were unfed/fed with native HZ for 2 h. After 24 hours, MIP-1alpha production was evaluated by ELISA in cell supernatants. Alternatively, HZ-unfed/fed monocytes were treated in presence/absence of anti-human MIP-1alpha blocking antibodies or recombinant human MIP-1alpha for 15 h (RNA studies) or 24 h (protein studies); therefore, MMP-9 mRNA expression was evaluated in cell lysates by Real Time RT-PCR, whereas proMMP-9 and active MMP-9 protein release were measured in cell supernatants by Western blotting and gelatin zymography. RESULTS Phagocytosis of HZ by human monocytes increased production of MIP-1 alpha, mRNA expression of MMP-9 and protein release of proMMP-9 and active MMP-9. All the HZ-enhancing effects on MMP-9 were abrogated by anti-human MIP-1alpha blocking antibodies and mimicked by recombinant human MIP-1alpha. CONCLUSIONS The present work suggests a role for MIP-1alpha in the HZ-dependent enhancement of MMP-9 expression, release and activity observed in human monocytes, highlighting new detrimental effects of HZ-triggered proinflammatory response by phagocytic cells in falciparum malaria.


PLOS ONE | 2013

Natural Haemozoin Induces Expression and Release of Human Monocyte Tissue Inhibitor of Metalloproteinase-1

Manuela Polimeni; Elena Valente; Daniela Ulliers; Ghislain Opdenakker; Philippe E. Van den Steen; Giuliana Giribaldi; Mauro Prato

Recently matrix metalloproteinase-9 (MMP-9) and its endogenous inhibitor (tissue inhibitor of metalloproteinase-1, TIMP-1) have been implicated in complicated malaria. In vivo, mice with cerebral malaria (CM) display high levels of both MMP-9 and TIMP-1, and in human patients TIMP-1 serum levels directly correlate with disease severity. In vitro, natural haemozoin (nHZ, malarial pigment) enhances monocyte MMP-9 expression and release. The present study analyses the effects of nHZ on TIMP-1 regulation in human adherent monocytes. nHZ induced TIMP-1 mRNA expression and protein release, and promoted TNF-α, IL-1β, and MIP-1α/CCL3 production. Blocking antibodies or recombinant cytokines abrogated or mimicked nHZ effects on TIMP-1, respectively. p38 MAPK and NF-κB inhibitors blocked all nHZ effects on TIMP-1 and pro-inflammatory molecules. Still, total gelatinolytic activity was enhanced by nHZ despite TIMP-1 induction. Collectively, these data indicate that nHZ induces inflammation-mediated expression and release of human monocyte TIMP-1 through p38 MAPK- and NF-κB-dependent mechanisms. However, TIMP-1 induction is not sufficient to counterbalance nHZ-dependent MMP-9 enhancement. Future investigation on proteinase-independent functions of TIMP-1 (i.e. cell survival promotion and growth/differentiation inhibition) is needed to clarify the role of TIMP-1 in malaria pathogenesis.


Asian Pacific Journal of Tropical Medicine | 2010

Malarial pigment enhances heat shock protein-27 in THP-1 cells: New perspectives for in vitro studies on monocyte apoptosis prevention

Mauro Prato; Valentina Gallo; Elena Valente; Amina Khadjavi; Giorgia Mandili; Giuliana Giribaldi

Abstract Objective To investigate the effect of malarial pigment (hemozoin, HZ) on expression of heat shock proteins (HSPs) and cell viability in human monocytes by using a stable cell line (THP-1 cells). Methods THP-1 cells were fed with native HZ or treated with pro-apoptotic molecule gliotoxin for 9 h. Thereafter, the protein expression of HSP-27 and HSP-70 was evaluated by western blotting. Alternatively, HZ-fed cells were cultured up to 72 h and cell viability parameters (survival, apoptosis and necrosis rates) were measured by flow cytometric analysis. Results HZ increased basal protein levels of HSP-27 without altering those of HSP-70 in THP-1 cells, and promoted long-term cell survival without inducing apoptosis. As expected, gliotoxin inhibited HSP-27 protein expression and promoted long-term cell apoptosis. Conclusions Present data show that HZ prevents cell apoptosis and enhances the expression of anti-apoptotic HSP-27 in THP-1 cells, confirming the previous evidences obtained from HZ-fed immunopurified monocytes. Since the use of a stable cell line is pivotal to perform HSP-27 silencing experiments, monocytic THP-1 cells could be a good candidate line for such an approach, which is heavily required to clarify the role of HSP-27 in survival of impaired HZ-fed monocytes during falciparum malaria.


Free Radical Biology and Medicine | 2015

Oxidative stress-mediated antimalarial activity of plakortin, a natural endoperoxide from the tropical sponge Plakortis simplex.

Oleksii A. Skorokhod; Denise Davalos-Schafler; Valentina Gallo; Elena Valente; Daniela Ulliers; Agata Notarpietro; Giorgia Mandili; Francesco Novelli; Marco Persico; Orazio Taglialatela-Scafati; Paolo Arese; Evelin Schwarzer

Plakortin, a polyketide endoperoxide from the sponge Plakortis simplex has antiparasitic activity against P. falciparum. Similar to artemisinin, its activity depends on the peroxide functionality. Plakortin induced stage-, dose- and time-dependent morphologic anomalies, early maturation delay, ROS generation and lipid peroxidation in the parasite. Ring damage by 1 and 10 µM plakortin led to parasite death before schizogony at 20 and 95%, respectively. Treatment of late schizonts with 1, 2, 5 and 10 µM plakortin resulted in decreased reinfection rates by 30, 50, 61 and 65%, respectively. In both rings and trophozoites, plakortin induced a dose- and time-dependent ROS production as well as a significant lipid peroxidation and up to 4-fold increase of the lipoperoxide breakdown product 4-hydroxynonenal (4-HNE). Antioxidants and the free radical scavengers trolox and N-acetylcysteine significantly attenuated the parasite damage. Plakortin generated 4-HNE conjugates with the P. falciparum proteins: heat shock protein Hsp70-1, endoplasmatic reticulum-standing Hsp70-2 (BiP analogue), V-type proton ATPase catalytic subunit A, enolase, the putative vacuolar protein sorting-associated protein 11, and the dynein heavy chain-like protein, whose specific binding sites were identified by mass spectrometry. These proteins are crucially involved in protein trafficking, transmembrane and vesicular transport and parasite survival. We hypothesize that binding of 4-HNE to functionally relevant parasite proteins may explain the observed plakortin-induced morphologic aberrations and parasite death. The identification of 4-HNE-protein conjugates may generate a novel paradigm to explain the mechanism of action of pro-oxidant, peroxide-based antimalarials such as plakortin, artemisinins and synthetic endoperoxides.


Journal of Proteomics | 2012

Effect of heterozygous beta thalassemia on the phosphorylative response to Plasmodium falciparum infection.

Antonella Pantaleo; Emanuela Ferru; Franco Carta; Elena Valente; Proto Pippia; Francesco Michelangelo Turrini

Malaria parasites interact with the host cell membrane inserting new proteins and inducing oxidative and phosphorylative changes of erythrocyte proteins. In the present report we monitored the time dependent oxidative and phosphorylative modifications induced by parasites in heterozygous beta thalassemia (Het-βThal). Het-βThal causes mild anemia and is known to determine a pro-oxidant milieu and a protective effect against severe malaria. In malaria cultures Het-βThal has been reported to induce accumulation of hemoglobin denaturation products. At early parasite development stages (rings), tyrosine hyper-phosphorylation of band 3 was the most notable modification, and at later development stages (trophozoites), additional membrane proteins displayed significant hyper-phosphorylation of their serine and tyrosine residues (adducins, ankyrin, catalase). Het-βThal also caused membrane destabilization. Free radical scavengers effectively inhibited the phosphorylative response and membrane destabilization. Kinase inhibitors exerted similar effects suggesting a causal relationship between oxidative stress, membrane protein hyper-phosphorylation and increased membrane damage exacerbated by Het-βThal. In conclusion, different lines of evidence suggest that Het-βThal enhances the redox stress caused by malaria parasites inducing its protective effect destabilizing the host cell membrane. This article is part of a Special Issue entitled: Integrated omics.

Collaboration


Dive into the Elena Valente's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge