Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aminata Touré is active.

Publication


Featured researches published by Aminata Touré.


American Journal of Human Genetics | 2012

Loss-of-Function Mutations in LRRC6, a Gene Essential for Proper Axonemal Assembly of Inner and Outer Dynein Arms, Cause Primary Ciliary Dyskinesia

Esther Kott; Philippe Duquesnoy; Bruno Copin; Marie Legendre; Florence Dastot-Le Moal; Guy Montantin; Ludovic Jeanson; Aline Tamalet; Jean-François Papon; Jean-Pierre Siffroi; Nathalie Rives; Valérie Mitchell; Jacques de Blic; André Coste; Annick Clement; Denise Escalier; Aminata Touré; Estelle Escudier; Serge Amselem

Primary ciliary dyskinesia (PCD) is a group of autosomal-recessive disorders resulting from cilia and sperm-flagella defects, which lead to respiratory infections and male infertility. Most implicated genes encode structural proteins that participate in the composition of axonemal components, such as dynein arms (DAs), that are essential for ciliary and flagellar movements; they explain the pathology in fewer than half of the affected individuals. We undertook this study to further understand the pathogenesis of PCD due to the absence of both DAs. We identified, via homozygosity mapping, an early frameshift in LRRC6, a gene that encodes a leucine-rich-repeat (LRR)-containing protein. Subsequent analyses of this gene mainly expressed in testis and respiratory cells identified biallelic mutations in several independent individuals. The situs inversus observed in two of them supports a key role for LRRC6 in embryonic nodal cilia. Study of native LRRC6 in airway epithelial cells revealed that it localizes to the cytoplasm and within cilia, whereas it is absent from cells with loss-of-function mutations, in which DA protein markers are also missing. These results are consistent with the transmission-electron-microscopy data showing the absence of both DAs in cilia or flagella from individuals with LRRC6 mutations. In spite of structural and functional similarities between LRRC6 and DNAAF1, another LRR-containing protein involved in the same PCD phenotype, the two proteins are not redundant. The evolutionarily conserved LRRC6, therefore, emerges as an additional player in DA assembly, a process that is essential for proper axoneme building and that appears to be much more complex than was previously thought.


American Journal of Human Genetics | 2014

Mutations in DNAH1, which Encodes an Inner Arm Heavy Chain Dynein, Lead to Male Infertility from Multiple Morphological Abnormalities of the Sperm Flagella

Mariem Ben Khelifa; Charles Coutton; Raoudha Zouari; Thomas Karaouzène; John Rendu; Marie Bidart; Sandra Yassine; Virginie Pierre; Julie Delaroche; Sylviane Hennebicq; Didier Grunwald; Denise Escalier; Karine Pernet-Gallay; Pierre-Simon Jouk; Nicolas Thierry-Mieg; Aminata Touré; Christophe Arnoult; Pierre F. Ray

Ten to fifteen percent of couples are confronted with infertility and a male factor is involved in approximately half the cases. A genetic etiology is likely in most cases yet only few genes have been formally correlated with male infertility. Homozygosity mapping was carried out on a cohort of 20 North African individuals, including 18 index cases, presenting with primary infertility resulting from impaired sperm motility caused by a mosaic of multiple morphological abnormalities of the flagella (MMAF) including absent, short, coiled, bent, and irregular flagella. Five unrelated subjects out of 18 (28%) carried a homozygous variant in DNAH1, which encodes an inner dynein heavy chain and is expressed in testis. RT-PCR, immunostaining, and electronic microscopy were carried out on samples from one of the subjects with a mutation located on a donor splice site. Neither the transcript nor the protein was observed in this individual, confirming the pathogenicity of this variant. A general axonemal disorganization including mislocalization of the microtubule doublets and loss of the inner dynein arms was observed. Although DNAH1 is also expressed in other ciliated cells, infertility was the only symptom of primary ciliary dyskinesia observed in affected subjects, suggesting that DNAH1 function in cilium is not as critical as in sperm flagellum.


Human Reproduction | 2009

Absence of annulus in human asthenozoospermia: Case Report†

P. Lhuillier; B. Rode; Denise Escalier; P. Lorès; T. Dirami; Thierry Bienvenu; G. Gacon; Emmanuel Dulioust; Aminata Touré

The annulus is a septin-based ring structure located at the junction of the midpiece (MP) and the principal piece (PP) of spermatozoa flagellum. In the mouse, deletion of Septin 4, a structural component of the sperm annulus, prevents annulus formation and leads to MP-PP disjunction, flagellar bending, asthenozoospermia and male sterility. Testis anion transporter 1 (Tat1) is a germ cell-specific member of the SLC26 anion transporter family and is co-expressed with Septin 4 at the sperm annulus. Interestingly, Tat1 null sperm bear an atrophic annulus, causing a phenotype similar to that of Sept4 null sperm. We searched for Tat1 misexpression and/or mislocalization in spermatozoa from asthenozoospermic subjects (n = 75) and controls by performing an immunofluorescence detection assay on sperm smear preparations. We found one patient showing moderate asthenozoospermia, with 97% of sperm lacking Tat1, Septin 4 and Septin 7 proteins at the annulus. We confirmed the absence of the annulus structure by transmission electron microscopy and observed that spermatozoa from the patient displayed MP-PP disjunction and abnormal mitochondrial organization. We show that the structural defects in sperm are not caused by abnormal transcription or point mutations of the TAT1 and SEPT4 genes; however, although both proteins are expressed, they are not properly localized at sperm annulus. The case we studied, so far unreported in human, confirms the involvement of Tat1 and Septin proteins in the constitution of the annulus, but also raises questions about the function of this structure in human sperm motility.


Endocrinology | 2012

Inactivation of AMPKα1 Induces Asthenozoospermia and Alters Spermatozoa Morphology

Pauline Tartarin; Edith Guibert; Aminata Touré; Claire Ouiste; Jocelyne Leclerc; Nieves Sanz; Sylvain Brière; Jean-Louis Dacheux; Bernadette Delaleu; Judith McNeilly; Alan S. McNeilly; Jean-Pierre Brillard; Joëlle Dupont; Marc Foretz; Benoit Viollet; Pascal Froment

AMP-activated protein kinase (AMPK), a key regulator of cellular energy homeostasis, is present in metabolic tissues (muscle and liver) and has been identified as a modulator of the female reproductive functions. However, its function in the testis has not yet been clearly defined. We have investigated the potential role of AMPK in male reproduction by using transgenic mice lacking the activity of AMPK catalytic subunit α1 gene [α1AMPK knockout (KO)]. In the testis, the α1AMPK subunit is expressed in germ cells and also in somatic cells (Sertoli and Leydig cells). α1AMPK KO male mice show a decrease in fertility, despite no clear alteration in the testis morphology or sperm production. However, in α1AMPK(-/-) mice, we demonstrate that spermatozoa have structural abnormalities and are less motile than in control mice. These spermatozoa alterations are associated with a 50% decrease in mitochondrial activity, a 60% decrease in basal oxygen consumption, and morphological defects. The α1AMPK KO male mice had high androgen levels associated with a 5- and 3-fold increase in intratesticular cholesterol and testosterone concentrations, respectively. High concentrations of proteins involved in steroid production (3β-hydroxysteroid dehydrogenase, cytochrome steroid 17 alpha-hydroxylase/17,20 lysate, and steroidogenic acute regulatory protein) were also detected in α1AMPK(-/-) testes. In the pituitary, the LH and FSH concentrations tended to be lower in α1AMPK(-/-) male mice, probably due to the negative feedback of the high testosterone levels. These results suggest that total α1AMPK deficiency in male mice affects androgen production and quality of spermatozoa, leading to a decrease in fertility.


American Journal of Human Genetics | 2013

Missense Mutations in SLC26A8, Encoding a Sperm-Specific Activator of CFTR, Are Associated with Human Asthenozoospermia

Thassadite Dirami; Baptiste Rode; Mathilde Jollivet; Nathalie Da Silva; Denise Escalier; Natacha Gaitch; Caroline Norez; Pierre Tufféry; Jean-Philippe Wolf; Frédéric Becq; Pierre F. Ray; Emmanuel Dulioust; Gérard Gacon; Thierry Bienvenu; Aminata Touré

The cystic fibrosis transmembrane conductance regulator (CFTR) is present in mature sperm and is required for sperm motility and capacitation. Both these processes are controlled by ions fluxes and are essential for fertilization. We have shown that SLC26A8, a sperm-specific member of the SLC26 family of anion exchangers, associates with the CFTR channel and strongly stimulates its activity. This suggests that the two proteins cooperate to regulate the anion fluxes required for correct sperm motility and capacitation. Here, we report on three heterozygous SLC26A8 missense mutations identified in a cohort of 146 men presenting with asthenozoospermia: c.260G>A (p.Arg87Gln), c.2434G>A (p.Glu812Lys), and c.2860C>T (p.Arg954Cys). These mutations were not present in 121 controls matched for ethnicity, and statistical analysis on a control population of 8,600 individuals (from dbSNP and 1000 Genomes) showed them to be associated with asthenozoospermia with a power > 95%. By cotransfecting Chinese hamster ovary (CHO)-K1 cells with SLC26A8 variants and CFTR, we showed that the physical interaction between the two proteins was partly conserved but that the capacity to activate CFTR-dependent anion transport was completely abolished for all mutants. Biochemical studies revealed the presence of much smaller amounts of protein for all variants, but these amounts were restored to wild-type levels upon treatment with the proteasome inhibitor MG132. Immunocytochemistry also showed the amounts of SLC26A8 in sperm to be abnormally small in individuals carrying the mutations. These mutations might therefore impair formation of the SLC26A8-CFTR complex, principally by affecting SLC26A8 stability, consistent with an impairment of CFTR-dependent sperm-activation events in affected individuals.


Human Molecular Genetics | 2012

The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation

Baptiste Rode; Thassadite Dirami; Naziha Bakouh; Marthe Rizk-Rabin; Caroline Norez; Pierre Lhuillier; Patrick Lorès; Mathilde Jollivet; Patricia Melin; Ilona Zvetkova; Thierry Bienvenu; Frédéric Becq; Gabrielle Planelles; Aleksander Edelman; Gérard Gacon; Aminata Touré

The Slc26 gene family encodes several conserved anion transporters implicated in human genetic disorders, including Pendred syndrome, diastrophic dysplasia and congenital chloride diarrhea. We previously characterized the TAT1 (testis anion transporter 1; SLC26A8) protein specifically expressed in male germ cells and mature sperm and showed that in the mouse, deletion of Tat1 caused male sterility due to a lack of sperm motility, impaired sperm capacitation and structural defects of the flagella. Ca(2+), Cl(-) and HCO(3)(-) influxes trigger sperm capacitation events required for oocyte fertilization; these events include the intracellular rise of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA)-dependent protein phosphorylation. The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in mature sperm and has been shown to contribute to Cl(-) and HCO(3)(-) movements during capacitation. Furthermore, several members of the SLC26 family have been described to form complexes with CFTR, resulting in the reciprocal regulation of their activities. We show here that TAT1 and CFTR physically interact and that in Xenopus laevis oocytes and in CHO-K1 cells, TAT1 expression strongly stimulates CFTR activity. Consistent with this, we show that Tat1 inactivation in mouse sperm results in deregulation of the intracellular cAMP content, preventing the activation of PKA-dependent downstream phosphorylation cascades essential for sperm activation. These various results suggest that TAT1 and CFTR may form a molecular complex involved in the regulation of Cl(-) and HCO(3)(-) fluxes during sperm capacitation. In humans, mutations in CFTR and/or TAT1 may therefore be causes of asthenozoospermia and low fertilizing capacity of sperm.


Biochemical Journal | 2003

Rho family GTPase Rnd2 interacts and co-localizes with MgcRacGAP in male germ cells.

Nathalie Naud; Aminata Touré; Jianfeng Liu; Charles Pineau; Laurence Morin; Olivier Dorseuil; Denise Escalier; Pierre Chardin; Gérard Gacon

The male-germ-cell Rac GTPase-activating protein gene (MgcRacGAP) was initially described as a human RhoGAP gene highly expressed in male germ cells at spermatocyte stage, but exhibits significant levels of expression in most cell types. In somatic cells, MgcRacGAP protein was found to both concentrate in the midzone/midbody and be required for cytokinesis. As a RhoGAP, MgcRacGAP has been proposed to down-regulate RhoA, which is localized to the cleavage furrow and midbody during cytokinesis. Due to embryonic lethality in MgcRacGAP -null mutant mice and to the lack of an in vitro model of spermatogenesis, nothing is known regarding the role and mode of action of MgcRacGAP in male germ cells. We have analysed the expression, subcellular localization and molecular interactions of MgcRacGAP in male germ cells. Whereas MgcRacGAP was found only in spermatocytes and early spermatids, the widespread RhoGTPases RhoA, Rac1 and Cdc42 (which are, to various extents, in vitro substrates for MgcRacGAP activity) were, surprisingly, not detected at these stages. In contrast, Rnd2, a Rho family GTPase-deficient G-protein was found to be co-expressed with MgcRacGAP in spermatocytes and spermatids. MgcRacGAP was detected in the midzone of meiotic cells, but also, unexpectedly, in the Golgi-derived pro-acrosomal vesicle, co-localizing with Rnd2. In addition, a stable Rnd2-MgcRacGAP molecular complex could be evidenced by glutathione S-transferase pull-down and co-immunoprecipitation experiments. We conclude that Rnd2 is a probable physiological partner of MgcRacGAP in male germ cells and we propose that MgcRacGAP, and, quite possibly, other RhoGAPs, may participate in signalling pathways involving Rnd family proteins.


Clinical Genetics | 2017

Genetic abnormalities leading to qualitative defects of sperm morphology or function.

Pierre F. Ray; Aminata Touré; Catherine Metzler-Guillemain; Michael J. Mitchell; Christophe Arnoult; Charles Coutton

Infertility, defined by the inability of conceiving a child after 1 year is estimated to concern approximately 50 million couples worldwide. As the male gamete is readily accessible and can be studied by a simple spermogram it is easier to subcategorize male than female infertility. Subjects with a specific sperm phenotype are more likely to have a common origin thus facilitating the search for causal factors. Male infertility is believed to be often multifactorial and caused by both genetic and extrinsic factors, but severe cases of male infertility are likely to have a predominant genetic etiology. Patients presenting with a monomorphic teratozoospermia such as globozoospermia or macrospermia with more than 85% of the spermatozoa presenting this specific abnormality have been analyzed permitting to identify several key genes for spermatogenesis such as AURKC and DPY19L2. The study of patients with other specific sperm anomalies such as severe alteration of sperm motility, in particular multiple morphological anomalies of the sperm flagella (MMAF) or sperm unability to fertilize the oocyte (oocyte activation failure syndrome) has also enable the identification of new infertility genes. Here we review the recent works describing the identification and characterization of gene defects having a direct qualitative effect on sperm morphology or function.


The International Journal of Biochemistry & Cell Biology | 2014

Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): Physiological and pathophysiological relevance

Elma El Khouri; Aminata Touré

The solute carrier 26 (SLC26) proteins are transmembrane proteins located at the plasma membrane of the cells and transporting a variety of monovalent and divalent anions, including chloride, bicarbonate, sulfate and oxalate. In humans, 11 members have been identified (SLC26A1 to SLC26A11) and although part of them display a very restricted tissue expression pattern, altogether they are widely expressed in the epithelial cells of the body where they contribute to the composition and the pH regulation of the secreted fluids. Importantly, mutations in SLC26A2, A3, A4, and A5 have been associated with distinct human genetic recessive disorders (i.e. diastrophic dysplasia, congenital chloride diarrhea, Pendred syndrome and deafness, respectively), demonstrating their essential and non-redundant functions in many tissues. During the last decade, physical and functional interactions of SLC26 members with the cystic fibrosis transmembrane conductance regulator (CFTR) have been highly documented, leading to the model of a crosstalk based on the binding of the SLC26 STAS domain to the CFTR regulatory domain. In this review, we will focus on the functional interaction of SLC26A8 and SLC26A9 with the CFTR channel. In particular we will highlight the newly published studies indicating that mutations in SLC26A8 and SLC26A9 proteins are associated with a deregulation of the CFTR anion transport activity in the pathophysiological context of the sperm and the pulmonary cells. These studies confirm the physiological relevance of SLC26 and CFTR cross-regulation, opening new gates for the treatment of cystic fibrosis.


Biochemical Journal | 1999

Structure and expression of murine mgcRacGAP: its developmental regulation suggests a role for the Rac/MgcRacGAP signalling pathway in neurogenesis.

Chantal Arar; Marie-Odile Ott; Aminata Touré; Gérard Gacon

Rho-family GTPases regulate a wide range of biological functions including cell migration, cell adhesion and cell growth. Recently, results from studies in vivo in Drosophila, mouse and humans have demonstrated the involvement of these GTPases in mechanisms controlling neuronal differentiation and the development of the central nervous system (CNS). However, the signalling pathways underlying these functions and the proteins directly regulating RhoGTPases in developing neurons are poorly defined. Here we report the structure and expression pattern of the murine orthologue of mgcRacGAP, a human gene encoding a RacGTPase partner expressed in male germ cells [Touré, Dorseuil, Morin, Timmons, Jegou, Reibel and Gacon (1998) J. Biol. Chem. 273, 6019-6023]. In contrast with that from humans, murine mgcRacGAP encodes two distinct transcripts. Both are developmentally regulated. A 2.2 kb transcript is strongly expressed in mature testis and is up-regulated with spermatogenesis. A 3 kb RNA is predominant in the embryo and is expressed primarily in the CNS during the neurogenic phase, decreasing after birth. In situ hybridization analysis in embryonic-day 14.5 mouse embryos demonstrates a preferential expression of mgcRacGAP in the proliferative ventricular zone of the cortex. In addition to the expression of mgcRacGAP in male germ cells already reported in humans and suggesting an involvement in spermatogenesis, we characterize an embryonic transcript whose expression is closely correlated with neurogenesis. This result addresses the question of the role of Rac/MgcRacGAP pathway in neuronal proliferation.

Collaboration


Dive into the Aminata Touré's collaboration.

Top Co-Authors

Avatar

Gérard Gacon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Patrick Lorès

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Emmanuel Dulioust

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Mélanie Bonhivers

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Nicolas Thierry-Mieg

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Denise Escalier

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Denis Dacheux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thierry Bienvenu

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Nicolas Landrein

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge